A224317 a(n) = a(n-1) + 3 - a(n-1)!.
1, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, 3, 0, 2
Offset: 1
Examples
For n=1, a(1) = a(1-1) + 3 - a(1-1)! = 1 + 3 - 1 = 3. For n=2, a(2) = a(2-1) + 3 - a(2-1)! = 3 + 3 - 6 = 0. For n=3, a(3) = a(3-1) + 3 - a(3-1)! = 0 + 3 - 1 = 2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Programs
-
Mathematica
NestList[#+3-#!&,1,90] (* or *) PadRight[{1},90,{2,3,0}] (* Harvey P. Dale, Apr 23 2015 *)
-
PARI
a(n)=if(n>1, [0, 2, 3][n%3+1], 1) \\ Charles R Greathouse IV, Apr 03 2013
Formula
a(n) = a(n-1) + 3 - a(n-1)!.
For n > 1, a(n) = (5+4*cos(2*(n+1)*Pi/3) - 2*sqrt(3)*sin(2*(n+1)*Pi/3))/3. - Wesley Ivan Hurt, Sep 27 2017
a(n) = (floor((4*n - 1)/3) + signum(n - 1)) mod 4. - Lechoslaw Ratajczak, Jul 01 2023
Comments