A224321 Primes without "7" as a digit that remain prime when any single digit is replaced with "7".
2, 3, 5, 11, 13, 19, 31, 41, 43, 61, 109, 139, 251, 643, 4933, 9433, 36493, 191416111, 1304119699
Offset: 1
Links
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 1304119699
- Carlos Rivera, Puzzle 591
Programs
-
Mathematica
lst = {}; n = 7; Do[If[PrimeQ[p], i = IntegerDigits[p]; If[FreeQ[i, n], t = 0; s = IntegerLength[p]; Do[If[PrimeQ@FromDigits@Insert[Drop[i, {d}], n, d], t++, Break[]], {d, s}]; If[t == s, AppendTo[lst, p]]]], {p, 36493}]; lst Select[Prime[Range[4000]],DigitCount[#,10,7]==0&&AllTrue[FromDigits/@Table[ReplacePart[ IntegerDigits[#],n->7],{n,IntegerLength[#]}],PrimeQ]&] (* The program generates the first 17 terms of the sequence. *) (* Harvey P. Dale, Jun 09 2024 *)
Comments