A323782 Prime numbers such that the reverse of the balanced ternary representation is a prime or a negated prime.
2, 5, 7, 11, 13, 17, 29, 31, 37, 43, 53, 59, 61, 71, 73, 83, 89, 101, 103, 137, 139, 149, 163, 173, 179, 181, 193, 199, 223, 233, 241, 263, 269, 277, 311, 313, 331, 347, 353, 367, 373, 379, 383, 389, 401, 421, 443, 449, 457, 467, 479, 487, 499, 509, 541
Offset: 1
Examples
29 is a term: 29 is +0+- in balanced ternary notation +0+- reversed is -+0+ -+0+ is -17 in balanced ternary notation the absolute value of -17 is 17. 17 is prime Therefore 29 is "warped" to -17. This operation is reversible: -17 "warps" to 29.
Links
- Github, Python code repository
- Rosetta Code, Balanced Ternary Code
- Wikipedia, Balanced Ternary
Crossrefs
Programs
-
PARI
d3(n) = if ((n%3)==2, n\3+1, n\3); m3(n) = if ((n%3)==2, -1, n % 3); t(n) = if (n==0, [0], if (abs(n) == 1, [n], concat(m3(n), t(d3(n))))); f(n) = subst(Pol(Vec(t(n))), x, 3); isok(n) = isprime(n) && isprime(abs(f(n))); \\ Michel Marcus, Jan 29 2019
-
PARI
is(n) = {if(!isprime(n), return(0)); my(d = digits(n, 3)); forstep(i = #d, 2, -1, if(d[i] >= 2, d[i] -= 3; d[i-1]++)); if(d[1] >= 2, d[1]-=3; d = concat(1, d)); isprime(abs(fromdigits(Vecrev(d), 3)))} \\ David A. Corneth, Feb 14 2019
-
Python
# See links.
Comments