cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A224610 Smallest j such that j*2*prime(n)^3-1 and j*2*prime(n)*q^2-1 are prime.

Original entry on oeis.org

2, 2, 5, 7, 59, 142, 264, 25, 8, 21, 124, 33, 60, 87, 9, 231, 5, 6, 82, 155, 7, 66, 72, 21, 42, 105, 15, 48, 250, 68, 222, 54, 47, 195, 255, 360, 205, 6, 83, 26, 5, 1, 50, 220, 173, 1, 976, 30, 228, 130, 30, 129, 46, 1106, 65, 62, 15, 109, 24, 41, 922, 15, 132, 89
Offset: 1

Views

Author

Pierre CAMI, Apr 12 2013

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := For[p = Prime[n]; j = 1, j < 10^6, j++, If[PrimeQ[q = j*2*p^3 - 1] && PrimeQ[j*p*2*q^2 - 1], Return[j]]]; Table[a[n], {n, 1, 75}] (* Jean-François Alcover, Apr 22 2013 *)

A224611 Smallest j such that j*2*p(n)^3-1=q is prime, j*2*p(n)*q^2-1=r, j*2*p(n)*r^2-1=s, where r and s are also prime.

Original entry on oeis.org

902, 145, 771, 1060, 3569, 520, 938, 294, 2457, 3911, 1650, 483, 8604, 3450, 2345, 548, 25004, 1635, 5767, 14519, 2518, 6394, 198, 7961, 4272, 8370, 4146, 654, 4489, 6987, 222, 5426, 5250, 17670, 7691, 360, 3994, 20821, 9008, 6525, 9204, 1464, 6111, 6625, 11229, 3315, 62340, 735, 6962, 5236
Offset: 1

Views

Author

Pierre CAMI, Apr 12 2013

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := For[j = 1, j < 10^7, j++, p = Prime[n]; If[PrimeQ[q = j*2*p^3 - 1] && PrimeQ[r = j*2*p*q^2 - 1] && PrimeQ[j*2*p*r^2 - 1], Return[j]]]; Table[ Print[an = a[n]]; an, {n, 1, 50}] (* Jean-François Alcover, Apr 12 2013 *)

A224612 Let p = prime(n). Smallest j such that q = j*2*p^3-1, r = j*p*2*q^2-1, s = j*p*2*r^2-1, and j*p*2*s^2-1 are prime numbers.

Original entry on oeis.org

29952, 12063, 1463, 6102, 11661, 49552, 639179, 2099290, 291248, 393186, 545251, 321303, 436641, 278295, 746832, 237852, 56490, 165901, 152847, 619755, 777177, 3410085, 117513, 2015421, 497170, 14750, 161190, 347039, 251835, 57536, 222, 2083286, 384944, 1228474, 3909960, 344164, 332224, 207751, 14060
Offset: 1

Views

Author

Pierre CAMI, Apr 12 2013

Keywords

Comments

Conjecture: a(n) exists for all n.

Crossrefs

Programs

  • Maple
    f:= proc(n) local j,p,q,r,s;
        p:= ithprime(n);
        for j from 1 do
          q:= j*2*p^3-1; if not isprime(q) then next fi;
          r:= j*p*2*q^2-1; if not isprime(r) then next fi;
          s:= j*p*2*r^2-1; if not isprime(s) then next fi;
          if isprime(j*p*2*s^2-1) then return j fi;
        od
    end proc;
    map(f, [$1..25]); # Robert Israel, May 15 2025
  • Mathematica
    a[n_] := For[j = 1, j < 10^7, j++, p = Prime[n]; If[PrimeQ[q = j*2*p^3 - 1] && PrimeQ[r = j*2*p*q^2 - 1] && PrimeQ[s = j*2*p*r^2 - 1] && PrimeQ[j*2*p*s^2 - 1], Return[j]]]; Table[Print[an = a[n]]; an, {n, 1, 24}] (* Jean-François Alcover, Apr 12 2013 *)

Extensions

More terms from Jean-François Alcover, Apr 12 2013
Name clarified and more terms from Robert Israel, May 15 2025

A255258 Expansion of q^2 * phi(q) * psi(q^16) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 4, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0
Offset: 2

Views

Author

Michael Somos, Feb 19 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q^2 + 2*q^3 + 2*q^6 + 2*q^11 + 3*q^18 + 2*q^19 + 2*q^22 + 4*q^27 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(32), 1), 89); A[3] + 2*A[4] + 2*A[7] + 2*A[12];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q^8] / 2, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<2, 0, n -= 2; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^32 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^16 + A)), n))};
    

Formula

Expansion of eta(q^2)^5 * eta(q^32)^2 / (eta(q)^2 * eta(q^4)^2 * eta(q^16)) in powers of q.
Euler transform of period 32 sequence [ 2, -3, 2, -1, 2, -3, 2, -1, 2, -3, 2, -1, 2, -3, 2, 0, 2, -3, 2, -1, 2, -3, 2, -1, 2, -3, 2, -1, 2, -3, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 8^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A224609.
(-1)^n * a(n) = A227395(n).
a(4*n) = a(4*n + 1) = a(8*n + 7) = 0. a(4*n + 2) = A113411(n). a(8*n + 3) = 2 * A033761(n).
Showing 1-4 of 4 results.