cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A224611 Smallest j such that j*2*p(n)^3-1=q is prime, j*2*p(n)*q^2-1=r, j*2*p(n)*r^2-1=s, where r and s are also prime.

Original entry on oeis.org

902, 145, 771, 1060, 3569, 520, 938, 294, 2457, 3911, 1650, 483, 8604, 3450, 2345, 548, 25004, 1635, 5767, 14519, 2518, 6394, 198, 7961, 4272, 8370, 4146, 654, 4489, 6987, 222, 5426, 5250, 17670, 7691, 360, 3994, 20821, 9008, 6525, 9204, 1464, 6111, 6625, 11229, 3315, 62340, 735, 6962, 5236
Offset: 1

Views

Author

Pierre CAMI, Apr 12 2013

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := For[j = 1, j < 10^7, j++, p = Prime[n]; If[PrimeQ[q = j*2*p^3 - 1] && PrimeQ[r = j*2*p*q^2 - 1] && PrimeQ[j*2*p*r^2 - 1], Return[j]]]; Table[ Print[an = a[n]]; an, {n, 1, 50}] (* Jean-François Alcover, Apr 12 2013 *)

A224614 Primes p such that q = 2*p^3-1 and 2*p*q^2-1 are both prime.

Original entry on oeis.org

181, 199, 4363, 4549, 14563, 15073, 15739, 27361, 27901, 33469, 34231, 37123, 46279, 48271, 48673, 54193, 56101, 64591, 64609, 65539, 65731, 70183, 70891, 75703, 75979, 77659, 77863, 80953, 94309, 112573, 114889, 115153, 117361, 118189, 135799, 144751
Offset: 1

Views

Author

Pierre CAMI, Apr 12 2013

Keywords

Comments

When A224610(i) = 1 then prime(i) is in this sequence.
Subsequence of A177104. - R. J. Mathar, Apr 19 2013

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(180000) | IsPrime(q) and IsPrime(2*p*q^2-1) where q is 2*p^3-1 ]; // Bruno Berselli, Apr 19 2013
  • Mathematica
    Reap[For[p = 2, p < 200000, p = NextPrime[p], If[PrimeQ[q = 2*p^3 - 1] && PrimeQ[r = 2*p*q^2 - 1], Sow[p]]]][[2, 1]] (* Jean-François Alcover, Apr 19 2013 *)
    bpQ[n_]:=Module[{c=2n^3-1},AllTrue[{c,2n*c^2-1},PrimeQ]]; Select[ Prime[ Range[ 15000]],bpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 05 2015 *)

A224612 Let p = prime(n). Smallest j such that q = j*2*p^3-1, r = j*p*2*q^2-1, s = j*p*2*r^2-1, and j*p*2*s^2-1 are prime numbers.

Original entry on oeis.org

29952, 12063, 1463, 6102, 11661, 49552, 639179, 2099290, 291248, 393186, 545251, 321303, 436641, 278295, 746832, 237852, 56490, 165901, 152847, 619755, 777177, 3410085, 117513, 2015421, 497170, 14750, 161190, 347039, 251835, 57536, 222, 2083286, 384944, 1228474, 3909960, 344164, 332224, 207751, 14060
Offset: 1

Views

Author

Pierre CAMI, Apr 12 2013

Keywords

Comments

Conjecture: a(n) exists for all n.

Crossrefs

Programs

  • Maple
    f:= proc(n) local j,p,q,r,s;
        p:= ithprime(n);
        for j from 1 do
          q:= j*2*p^3-1; if not isprime(q) then next fi;
          r:= j*p*2*q^2-1; if not isprime(r) then next fi;
          s:= j*p*2*r^2-1; if not isprime(s) then next fi;
          if isprime(j*p*2*s^2-1) then return j fi;
        od
    end proc;
    map(f, [$1..25]); # Robert Israel, May 15 2025
  • Mathematica
    a[n_] := For[j = 1, j < 10^7, j++, p = Prime[n]; If[PrimeQ[q = j*2*p^3 - 1] && PrimeQ[r = j*2*p*q^2 - 1] && PrimeQ[s = j*2*p*r^2 - 1] && PrimeQ[j*2*p*s^2 - 1], Return[j]]]; Table[Print[an = a[n]]; an, {n, 1, 24}] (* Jean-François Alcover, Apr 12 2013 *)

Extensions

More terms from Jean-François Alcover, Apr 12 2013
Name clarified and more terms from Robert Israel, May 15 2025
Showing 1-3 of 3 results.