A224693 Smallest prime p such that p > gpf(p+1) > gpf(p+2) > ... > gpf(p+n) where gpf(m) is the greatest prime factor of m.
3, 13, 13, 491, 2011, 12721, 12721, 109453, 586951, 173912393, 785211341, 4044619541, 315400191511, 315400191511
Offset: 1
Examples
a(4) = 491 because 491 > 41 > 29 > 19 > 11 where: 492 = 2^2*3*41; 493 = 17*29; 494 = 2*13*19; 495 = 3^2*5*11.
Programs
-
Maple
with(numtheory): for n from 1 to 20 do: ii:=0: for k from 1 to 10^7 while(ii=0) do: p:=ithprime(k): it:=0: for m from 1 to n do: x0:=factorset(p+m-1):n0:=nops(x0): x1:=factorset(p+m):n1:=nops(x1): if x0[n0] > x1[n1] then it:=it+1: else fi: od: if it=n then printf ( "%d %d \n",n,p):ii:=1: else fi: od: od:
Extensions
a(10)-a(12) from Zak Seidov, Apr 17 2013
a(13)-a(14) from Donovan Johnson, Apr 26 2013
Comments