A224783 Denominator of Bernoulli(n,1/2) - Bernoulli(n,0).
1, 2, 4, 1, 16, 1, 64, 1, 256, 1, 1024, 1, 4096, 1, 16384, 1, 65536, 1, 262144, 1, 1048576, 1, 4194304, 1, 16777216, 1, 67108864, 1, 268435456, 1, 1073741824, 1, 4294967296, 1, 17179869184, 1, 68719476736, 1, 274877906944, 1, 1099511627776
Offset: 0
Examples
a(0) = 1-1, a(1) = 0+1/2, a(2) = -1/12-1/6=-1/4.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..250
- Index entries for linear recurrences with constant coefficients, signature (0,5,0,-4).
Programs
-
Maple
A224783 := proc(n) bernoulli(n,1/2)-bernoulli(n) ; denom(%) ; end proc: # R. J. Mathar, Apr 25 2013
-
Mathematica
Table[Denominator[BernoulliB[n, 1/2] - BernoulliB[n, 0]], {n, 0, 50}] (* Vincenzo Librandi, Mar 19 2014 *)
-
PARI
Vec((4*x^5-9*x^3-x^2+2*x+1)/((x-1)*(x+1)*(2*x-1)*(2*x+1)) + O(x^100)) \\ Colin Barker, Mar 20 2014
Formula
a(n) = A059222(n+1) if n <> 1.
From Colin Barker, Mar 19 2014: (Start)
G.f.: (4*x^5-9*x^3-x^2+2*x+1) / ((x-1)*(x+1)*(2*x-1)*(2*x+1)).
a(n) = 5*a(n-2)-4*a(n-4) for n>5.
a(n) = (1+(-2)^n-(-1)^n+2^n)/2 for n>1. (End).
Comments