cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224791 Triangle T(n,k) read by rows: left edge is 0, 1, 2, ... (cf. A001477); otherwise each entry is sum of entry to left and entries immediately above it to left and right, with 1 for the missing right term at right edge.

Original entry on oeis.org

0, 1, 2, 2, 5, 8, 3, 10, 23, 32, 4, 17, 50, 105, 138, 5, 26, 93, 248, 491, 630, 6, 37, 156, 497, 1236, 2357, 2988, 7, 50, 243, 896, 2629, 6222, 11567, 14556, 8, 65, 358, 1497, 5022, 13873, 31662, 57785, 72342, 9, 82, 505, 2360, 8879, 27774, 73309, 162756
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 18 2013

Keywords

Examples

			Triangle begins:
  0;
  1,  2;
  2,  5,  8;
  3, 10, 23,  32;
  4, 17, 50, 105, 138;
		

Crossrefs

Programs

  • Haskell
    a224791 n k = a224791_tabl !! n !! k
    a224791_row n = a224791_tabl !! n
    a224791_tabl = iterate
       (\row -> scanl1 (+) $ zipWith (+) ([1] ++ row) (row ++ [1])) [0]
    
  • Maple
    T:= proc(n, k) option remember;
          if k=0 then n
        elif k=n then T(n,n-1) + T(n-1,n-1) + 1
        else T(n,k-1) + T(n-1,k-1) + T(n-1, k)
          fi
        end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Nov 12 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, n, If[k==n , T[n, n-1] + T[n-1, n-1] + 1, T[n, k-1] + T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 12 2019 *)
  • PARI
    T(n,k) = if(k==0, n, if(k==n, T(n,n-1) + T(n-1,n-1) + 1, T(n,k-1) + T(n-1,k-1) + T(n-1, k) )); \\ G. C. Greubel, Nov 12 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0): return n
        elif (k==n): return T(n,n-1) + T(n-1,n-1) + 1
        else: return T(n,k-1) + T(n-1,k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019

Formula

T(n,0) = n, T(n+1,k) = T(n+1,k-1) + T(n,k-1) + T(n,k) (0 < k <= n) and T(n+1,n+1) = T(n+1,n) + T(n,n) + 1.