A224791 Triangle T(n,k) read by rows: left edge is 0, 1, 2, ... (cf. A001477); otherwise each entry is sum of entry to left and entries immediately above it to left and right, with 1 for the missing right term at right edge.
0, 1, 2, 2, 5, 8, 3, 10, 23, 32, 4, 17, 50, 105, 138, 5, 26, 93, 248, 491, 630, 6, 37, 156, 497, 1236, 2357, 2988, 7, 50, 243, 896, 2629, 6222, 11567, 14556, 8, 65, 358, 1497, 5022, 13873, 31662, 57785, 72342, 9, 82, 505, 2360, 8879, 27774, 73309, 162756
Offset: 0
Examples
Triangle begins: 0; 1, 2; 2, 5, 8; 3, 10, 23, 32; 4, 17, 50, 105, 138;
Links
Programs
-
Haskell
a224791 n k = a224791_tabl !! n !! k a224791_row n = a224791_tabl !! n a224791_tabl = iterate (\row -> scanl1 (+) $ zipWith (+) ([1] ++ row) (row ++ [1])) [0]
-
Maple
T:= proc(n, k) option remember; if k=0 then n elif k=n then T(n,n-1) + T(n-1,n-1) + 1 else T(n,k-1) + T(n-1,k-1) + T(n-1, k) fi end: seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Nov 12 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0, n, If[k==n , T[n, n-1] + T[n-1, n-1] + 1, T[n, k-1] + T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 12 2019 *)
-
PARI
T(n,k) = if(k==0, n, if(k==n, T(n,n-1) + T(n-1,n-1) + 1, T(n,k-1) + T(n-1,k-1) + T(n-1, k) )); \\ G. C. Greubel, Nov 12 2019
-
Sage
@CachedFunction def T(n, k): if (k==0): return n elif (k==n): return T(n,n-1) + T(n-1,n-1) + 1 else: return T(n,k-1) + T(n-1,k-1) + T(n-1, k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
Formula
T(n,0) = n, T(n+1,k) = T(n+1,k-1) + T(n,k-1) + T(n,k) (0 < k <= n) and T(n+1,n+1) = T(n+1,n) + T(n,n) + 1.