A285268 Triangle read by rows: T(m,n) = Sum_{i=1..n} P(m,i) where P(m,n) = m!/(m-n)! is the number of permutations of m items taken n at a time, for 1 <= n <= m.
1, 2, 4, 3, 9, 15, 4, 16, 40, 64, 5, 25, 85, 205, 325, 6, 36, 156, 516, 1236, 1956, 7, 49, 259, 1099, 3619, 8659, 13699, 8, 64, 400, 2080, 8800, 28960, 69280, 109600, 9, 81, 585, 3609, 18729, 79209, 260649, 623529, 986409, 10, 100, 820, 5860, 36100, 187300, 792100, 2606500, 6235300, 9864100
Offset: 1
Examples
Triangle begins: 1; 2, 4; 3, 9, 15; 4, 16, 40, 64; 5, 25, 85, 205, 325; 6, 36, 156, 516, 1236, 1956; 7, 49, 259, 1099, 3619, 8659, 13699; 8, 64, 400, 2080, 8800, 28960, 69280, 109600; 9, 81, 585, 3609, 18729, 79209, 260649, 623529, 986409; ...
Links
- Rick Nungester, Table of n, a(n) for n = 1..20100
Crossrefs
Programs
-
Maple
SumPermuteTriangle := proc(M) local m; for m from 1 to M do print(seq(add(m!/(m-k)!, k=1..n), n=1..m)) od; end: SumPermuteTriangle(10); # second Maple program: T:= proc(n, k) option remember; `if`(k<1, 0, T(n-1, k-1)*n+n) end: seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Jun 26 2022
-
Mathematica
Table[Sum[m!/(m - i)!, {i, n}], {m, 9}, {n, m}] // Flatten (* Michael De Vlieger, Apr 22 2017 *) (* Sum-free code *) b[j_] = If[j==0, 0, Floor[j! E - 1]]; T[m_,n_] = b[m] - m! b[m-n]/(m-n)!; Table[T[m, n],{m, 24},{n, m}]//Flatten (* Manfred Boergens, Jun 22 2022 *)
-
PARI
A285268(m,n,s=m-n+1)={for(k=m-n+2,m,s=(s+1)*k);s} \\ Much faster than sum(k=1,n,m!\(m-k)!), e.g., factor 6 for m=1..99, factor 57 for m=1..199. apply( A285268_row(m)=vector(m,n,A285268(m,n)), [1..9]) \\ M. F. Hasler, Oct 10 2019
-
PARI
T(n, k) = {exp(1)*(incgam(n+1, 1) - incgam(n-k, 1)*(n-k)*n!/(n-k)!) - 1;} apply(Trow(n) = vector(n, k, round(T(n, k))), [1..10]) \\ Adjust the realprecision if needed. Peter Luschny, Oct 10 2019
Formula
T(m, n) = Sum_{k=1..n} m!/(m-k)! = m*(1 + (m-1)*(1 + (m-2)*(1 + ... + m-n+1)...)), cf. PARI code. - M. F. Hasler, Oct 10 2019
T(n, k) = exp(1)*(Gamma(n+1, 1) - Gamma(n-k, 1)*(n-k)*n!/(n-k)!) - 1. - Peter Luschny, Oct 10 2019
Sum-free and Gamma-free formula: T(m, n) = b(m) - m!*b(m-n)/(m-n)! where b(0)=0, b(j)=floor(j!*e-1) for j>0. - Manfred Boergens, Jun 22 2022
Comments