A121662 Triangle read by rows: T(i,j) for the recurrence T(i,j) = (T(i-1,j) + 1)*i.
1, 4, 2, 15, 9, 3, 64, 40, 16, 4, 325, 205, 85, 25, 5, 1956, 1236, 516, 156, 36, 6, 13699, 8659, 3619, 1099, 259, 49, 7, 109600, 69280, 28960, 8800, 2080, 400, 64, 8, 986409, 623529, 260649, 79209, 18729, 3609, 585, 81, 9, 9864100, 6235300, 2606500, 792100, 187300, 36100, 5860, 820, 100, 10
Offset: 1
Examples
Triangle T(i,j) begins: 1 4 2 15 9 3 64 40 16 4 325 205 85 25 5 1956 1236 516 156 36 6 13699 8659 3619 1099 259 49 7 ...
Programs
-
Maple
T:= proc(i, j) option remember; `if`(j<1 or j>i, 0, T(i-1, j)*i+i) end: seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Jun 22 2022
-
Mathematica
Table[Sum[m!/(m - i)!, {i, n}], {m, 9}, {n, m, 1, -1}] // Flatten (* Michael De Vlieger, Apr 22 2017 *) (* Sum-free code *) b[j_] = If[j == 0, 0, Floor[j! E - 1]]; T[i_, j_] = b[i] - i! b[j - 1]/(j - 1)!; Table[T[i, j], {i, 24}, {j, i}] // Flatten (* Manfred Boergens, Jun 22 2022 *)
Formula
From Manfred Boergens, Jun 22 2022: (Start)
T(i, j) = Sum_{k=1..i-j+1} i!/(i-k)! = Sum_{k=j-1..i-1} i!/k!.
Sum-free formula: T(i, j) = b(i) - i!*b(j-1)/(j-1)! where b(0)=0, b(j)=floor(j!*e-1) for j>0.
(End)
Extensions
Edited by N. J. A. Sloane, Sep 15 2006
Formula in name corrected by Alois P. Heinz, Jun 22 2022
Comments