cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224880 a(n) = 2n + sum of divisors of n.

Original entry on oeis.org

3, 7, 10, 15, 16, 24, 22, 31, 31, 38, 34, 52, 40, 52, 54, 63, 52, 75, 58, 82, 74, 80, 70, 108, 81, 94, 94, 112, 88, 132, 94, 127, 114, 122, 118, 163, 112, 136, 134, 170, 124, 180, 130, 172, 168, 164, 142, 220, 155, 193, 174, 202, 160, 228, 182, 232, 194, 206
Offset: 1

Views

Author

Hans Havermann, Jul 23 2013

Keywords

Comments

This sequence is A033880 for the negative integers, thus making explicit the mapping noted in A075701.
From Omar E. Pol, Jun 21 2018: (Start)
a(n) is also the total area of the terraces and the vertical sides that are visible in the perspective view at the n-th level (starting from the top) of the stepped pyramid described in A245092.
Partial sums give A299692. (End)

Examples

			a(6) = 2*6 + (1+2+3+6) = 24.
		

Crossrefs

Programs

  • Maple
    with(numtheory); seq(2*k+sigma(k),k=1..100); # Wesley Ivan Hurt, Jul 24 2013
  • Mathematica
    Table[2*n+DivisorSigma[1,n],{n,64}]
  • PARI
    vector(80, n, 2*n + sigma(n)) \\ Michel Marcus, Aug 19 2015

Formula

a(n) = A155085(n) + n.
a(n) = 2n + sigma(n) = A005843(n) + A000203(n) = A033879(n) + 2*A000203(n) = A033880(n) + 2*A005843(n) = 2*A155085(n) - A000203(n) = 2*A000203(n) - A033880(n). - Wesley Ivan Hurt, Jul 24 2013
G.f.: 2*x/(1 - x)^2 + Sum_{k>=1} x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Mar 17 2017
a(n) = A001065(n) + A008585(n). - Omar E. Pol, Mar 06 2018
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = zeta(2)/2 + 1 = A072691 + 1 = 1.822467... . - Amiram Eldar, Mar 17 2024