A224883 a(n) = 2^(n^2) * binomial(n-1 + 1/2^(n-1), n).
1, 2, 6, 60, 2550, 476476, 384115732, 1305385229720, 18382187112952806, 1060603038396055882860, 248959068848694059131153020, 236689359381076468102847994171880, 908758498534088142521911865612937786108, 14063550492706544341683006937639901739122886616
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x/2 + 6*x^2/2^4 + 60*x^3/2^9 + 2550*x^4/2^16 + 476476*x^5/2^25 +...+ a(n)*x^n/2^(n^2) +... where A(x) = 1 - 2*log(1-x/2) + 4*log(1-x/4)^2/2! - 8*log(1-x/8)^3/3! + 16*log(1-x/16)^4/4! +...+ (-2)^n*log(1-x/2^n)^n/n! +... Illustrate a(n) = [x^n] 1/(1 - 2^n*x)^(2/2^n): (1-x)^(-2/1) = (1) + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 +... (1-2*x)^(-2/2) = 1 + (2)*x + 4*x^2 + 8*x^3 + 16*x^4 + 32*x^5 +... (1-4*x)^(-2/4) = 1 + 2*x + (6)*x^2 + 20*x^3 + 70*x^4 + 252*x^5 +... (1-8*x)^(-2/8) = 1 + 2*x + 10*x^2 + (60)*x^3 + 390*x^4 + 2652*x^5 +... (1-16*x)^(-2/16) = 1 + 2*x + 18*x^2 + 204*x^3 + (2550)*x^4 + 33660*x^5 +... (1-32*x)^(-2/32) = 1 + 2*x + 34*x^2 + 748*x^3 + 18326*x^4 + (476476)*x^5 +... where the coefficients in parenthesis form the initial terms of this sequence. Particular values. A(1) = 1 + 2*log(2) + 4*log(4/3)^2/2! + 8*log(8/7)^3/3! + 16*log(16/15)^4/4! +... A(1/2) = 1 + 2*log(4/3) + 4*log(8/7)^2/2! + 8*log(16/15)^3/3! +... A(1/4) = 1 + 2*log(8/7) + 4*log(16/15)^2/2! + 8*log(32/31)^3/3! +... A(3/2) = 1 + 2*log(4) + 4*log(8/5)^2/2! + 8*log(16/13)^3/3! + 16*log(32/29)^4/4! +... Explicitly, A(1) = 2.55500248436101360804704969796239525102504151... A(1/2) = 1.61138451105646219391156983544059555709337920... A(1/4) = 1.27543593708175757392940597050033002345086132... A(3/2) = 4.22639446385430649517540615961613624264078875...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..58
Programs
-
Mathematica
Table[2^(n^2) Binomial[n-1+1/2^(n-1),n],{n,0,20}] (* Harvey P. Dale, Feb 01 2017 *)
-
PARI
{a(n)=2^(n^2)*binomial(n-1+1/2^(n-1), n)} for(n=0,20,print1(a(n),", "))
-
PARI
{a(n)=(2^n/n!)*prod(k=0, n-1, 2^(n-1)*k + 1)} for(n=0,20,print1(a(n),", "))
-
PARI
{a(n)=2^(n^2)*polcoef(sum(k=0, n, (-2)^k*log(1-x/2^k +x*O(x^n))^k/k!),n)} for(n=0,20,print1(a(n),", "))
Formula
G.f.: Sum_{n>=0} (-2)^n * log(1 - x/2^n)^n/n! = Sum_{n>=0} a(n)*x^n/2^(n^2).
a(n) = (2^n/n!) * Product_{k=0..n-1} (2^(n-1)*k + 1).
a(n) = [x^n] 1/(1 - 2^n*x)^(2/2^n).