A224899 E.g.f.: Sum_{n>=0} sinh(n*x)^n.
1, 1, 8, 163, 6272, 389581, 35560448, 4479975823, 744707981312, 157897753198201, 41585725184933888, 13318468253704790683, 5097100004294081380352, 2297277197389011910783621, 1204339195916670860817072128, 726625952070893090583192860743
Offset: 0
Examples
E.g.f.: A(x) = 1 + x + 8*x^2/2! + 163*x^3/3! + 6272*x^4/4! +... where A(x) = 1 + sinh(x) + sinh(2*x)^2 + sinh(3*x)^3 + sinh(4*x)^4 +...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..225
Crossrefs
Programs
-
Mathematica
Flatten[{1,Table[Sum[Sum[Binomial[k,j] * (-1)^j * k^n*(k-2*j)^n / 2^k,{j,0,k}],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Oct 29 2014 *) Join[{1},Rest[With[{nn=20},CoefficientList[Series[Sum[Sinh[n*x]^n,{n,nn}],{x,0,nn}],x] Range[0,nn]!]]] (* Harvey P. Dale, May 18 2018 *)
-
PARI
{a(n)=n!*polcoeff(sum(k=0, n, sinh(k*x+x*O(x^n))^k), n)} for(n=0, 20, print1(a(n), ", "))
Formula
E.g.f.: Sum_{n>=0} exp(-n^2*x) * (exp(2*n*x) - 1)^n / 2^n.
a(n) ~ sqrt(Pi) * 2^(2*n+1) * n^(2*n+1/2) / (sqrt(3-2*log(2)) * 3^(n+1/2) * exp(2*n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, Oct 28 2014
Comments