cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A225293 G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^n / Product_{k=1..n} (1 - k*x).

Original entry on oeis.org

1, 1, 3, 11, 46, 210, 1022, 5232, 27954, 155142, 892007, 5306785, 32662475, 208108337, 1374219242, 9418564346, 67102315232, 497617712664, 3844733673180, 30960923835040, 259797722635505, 2269726236363395, 20618932709111866, 194452174592422916, 1900387863379327247
Offset: 0

Views

Author

Paul D. Hanna, May 04 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 46*x^4 + 210*x^5 + 1022*x^6 +...
where
A(x) = 1 + x*A(x)/(1-x) + x^2*A(x)^2/((1-x)*(1-2*x)) + x^3*A(x)^3/((1-x)*(1-2*x)*(1-3*x)) + x^4*A(x)^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*A^m/prod(k=1, m, 1-k*x +x*O(x^n)) )); polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n)=local(A=1+x);for(i=0,n,A=sum(m=0,n,x^m*sum(k=0,m,Stirling2(m,k)*(A+x*O(x^n))^k)));polcoeff(A,n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} Stirling2(n,k)*A(x)^k.

A225294 G.f. satisfies: A(x) = Sum_{n>=0} x^n / Product_{k=1..n} (1 - k*x*A(x)).

Original entry on oeis.org

1, 1, 2, 6, 22, 92, 424, 2112, 11236, 63360, 376800, 2355016, 15430784, 105797968, 757866592, 5664174736, 44109816528, 357447744576, 3010091812000, 26304829992224, 238217024498432, 2232483865359488, 21621812897089536, 216130222764401024, 2226983944005048960
Offset: 0

Views

Author

Paul D. Hanna, May 04 2013

Keywords

Comments

It appears that all terms a(n) for n>1 are even.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 22*x^4 + 92*x^5 + 424*x^6 + 2112*x^7 +...
where
A(x) = 1 + x/(1-x*A(x)) + x^2/((1-x*A(x))*(1-2*x*A(x))) + x^3/((1-x*A(x))*(1-2*x*A(x))*(1-3*x*A(x))) + x^4/((1-x*A(x))*(1-2*x*A(x))*(1-3*x*A(x))*(1-4*x*A(x))) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m/prod(k=1, m, 1-k*x*A +x*O(x^n)) )); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n)=local(A=1+x);for(i=0,n,A=sum(m=0,n,x^m*sum(k=0,m,Stirling2(m,k)*(A+x*O(x^n))^(m-k))));polcoeff(A,n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} Stirling2(n,k)*A(x)^(n-k).

A307402 G.f. A(x) satisfies: A(x) = Sum_{j>=0} j!*x^j*A(x)^j / Product_{k=1..j} (1 - k*x*A(x)).

Original entry on oeis.org

1, 1, 4, 23, 164, 1362, 12792, 133891, 1550148, 19772030, 277054232, 4252637446, 71248226536, 1297226168708, 25542157054944, 541131735552507, 12275049552454916, 296787898215881990, 7617196890240489912, 206772478080888288082, 5917589117194665548600, 178040033221054576103036
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2019

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 23*x^3 + 164*x^4 + 1362*x^5 + 12792*x^6 + 133891*x^7 + 1550148*x^8 + 19772030*x^9 + 277054232*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 22; A[] = 1; Do[A[x] = Sum[j! x^j A[x]^j/Product[(1 - k x A[x]), {k, 1, j}], {j, 0, i}] + O[x]^i, {i, 1, terms}]; CoefficientList[A[x], x]
    terms = 22; A[] = 1; Do[A[x] = Sum[(1/2) HurwitzLerchPhi[1/2, -k, 0] x^k A[x]^k, {k, 0, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
    terms = 22; CoefficientList[1/x InverseSeries[Series[x/Sum[(1/2) HurwitzLerchPhi[1/2, -k, 0]  x^k, {k, 0, terms}], {x, 0, terms}], x], x]

Formula

G.f. A(x) satisfies: A(x) = Sum_{k>=0} A000670(k)*x^k*A(x)^k.
G.f.: A(x) = (1/x)*Series_Reversion(x/Sum_{k>=0} A000670(k)*x^k).
a(n) ~ n! / (log(2))^(n+1). - Vaclav Kotesovec, Apr 07 2019

A301770 G.f. A(x) satisfies: A(x) = 1/(1 - x*A(x) - x^2*A(x)^2/(1 - x*A(x) - 2*x^2*A(x)^2/(1 - x*A(x) - 3*x^2*A(x)^2/(1 - ...)))), a continued fraction.

Original entry on oeis.org

1, 1, 3, 11, 47, 217, 1061, 5399, 28337, 152381, 835823, 4660779, 26357111, 150872165, 872878665, 5098306063, 30034591105, 178326873753, 1066472979083, 6421120346267, 38907397325295, 237182461204097, 1454326514077709, 8968048205494983, 55608797571427793, 346716786105033077
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 26 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 3*x^2 + 11*x^3 + 47*x^4 + 217*x^5 + 1061*x^6 + 5399*x^7 + 28337*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(1 + Sum[(I/Sqrt[2])^k * HermiteH[k, -I/Sqrt[2]] * x^k, {k, 1, n}])^(n+1)/(n+1), {x, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Nov 05 2021 *)

Formula

a(n) = [x^n] (Sum_{k>=0} A000085(k)*x^k)^(n+1)/(n + 1).
Showing 1-4 of 4 results.