A225015 Number of sawtooth patterns of length 1 in all Dyck paths of semilength n.
0, 1, 1, 5, 18, 66, 245, 918, 3465, 13156, 50193, 192270, 739024, 2848860, 11009778, 42642460, 165480975, 643281480, 2504501625, 9764299710, 38115568260, 148955040300, 582714871830, 2281745337300, 8942420595810, 35074414899576, 137672461877850, 540756483094828
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Magma
A024482:= func< n | (3*n-2)*Catalan(n-1)/2 >; A225015:= func< n | n le 2 select Floor((n+1)/2) else A024482(n) - A024482(n-1) >; [A225015(n): n in [0..40]]; // G. C. Greubel, Apr 03 2024
-
Maple
a:= proc(n) option remember; `if`(n<4, [0, 1, 1, 5][n+1], (n-1)*(3*n-4)*(4*n-10)*a(n-1)/(n*(n-2)*(3*n-7))) end: seq(a(n), n=0..30); # Alois P. Heinz, Apr 24 2013
-
Mathematica
Join[{0, 0, 1}, Table[(Binomial[2n, n]-Binomial[2n-2, n-1])/2, {n, 2, 25}]] // Differences (* Jean-François Alcover, Nov 12 2020 *)
-
SageMath
def A024482(n): return (3*n-2)*catalan_number(n-1)/2 def A225015(n): return floor((n+1)/2) if n<3 else A024482(n) - A024482(n-1) [A225015(n) for n in range(41)] # G. C. Greubel, Apr 03 2024
Formula
From G. C. Greubel, Apr 03 2024: (Start)
G.f.: (1-x)^2*(1 - sqrt(1-4*x))/(2*sqrt(1-4*x)).
E.g.f.: -(1/4)*(2-4*x+x^2) + (1/12)*Exp(2*x)*((6-12*x+43*x^2-24*x^3) *BesselI(0, 2*x) - 4*x*(7-5*x)*BesselI(1,2*x) - 3*x^2*(13-8*x)* BesselI(2,2*x)). (End)
Comments