cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225015 Number of sawtooth patterns of length 1 in all Dyck paths of semilength n.

Original entry on oeis.org

0, 1, 1, 5, 18, 66, 245, 918, 3465, 13156, 50193, 192270, 739024, 2848860, 11009778, 42642460, 165480975, 643281480, 2504501625, 9764299710, 38115568260, 148955040300, 582714871830, 2281745337300, 8942420595810, 35074414899576, 137672461877850, 540756483094828
Offset: 0

Views

Author

David Scambler, Apr 23 2013

Keywords

Comments

A sawtooth pattern of length 1 is UD not followed by UD.
First differences of A024482.

Crossrefs

Programs

  • Magma
    A024482:= func< n | (3*n-2)*Catalan(n-1)/2 >;
    A225015:= func< n | n le 2 select Floor((n+1)/2) else A024482(n) - A024482(n-1) >;
    [A225015(n): n in [0..40]]; // G. C. Greubel, Apr 03 2024
    
  • Maple
    a:= proc(n) option remember; `if`(n<4, [0, 1, 1, 5][n+1],
           (n-1)*(3*n-4)*(4*n-10)*a(n-1)/(n*(n-2)*(3*n-7)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 24 2013
  • Mathematica
    Join[{0, 0, 1}, Table[(Binomial[2n, n]-Binomial[2n-2, n-1])/2, {n, 2, 25}]] // Differences (* Jean-François Alcover, Nov 12 2020 *)
  • SageMath
    def A024482(n): return (3*n-2)*catalan_number(n-1)/2
    def A225015(n): return floor((n+1)/2) if n<3 else A024482(n) - A024482(n-1)
    [A225015(n) for n in range(41)] # G. C. Greubel, Apr 03 2024

Formula

a(0)=0, a(1)=1, a(n) = A024482(n) - A024482(n-1) for n >= 2.
From G. C. Greubel, Apr 03 2024: (Start)
G.f.: (1-x)^2*(1 - sqrt(1-4*x))/(2*sqrt(1-4*x)).
E.g.f.: -(1/4)*(2-4*x+x^2) + (1/12)*Exp(2*x)*((6-12*x+43*x^2-24*x^3) *BesselI(0, 2*x) - 4*x*(7-5*x)*BesselI(1,2*x) - 3*x^2*(13-8*x)* BesselI(2,2*x)). (End)