cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A239101 Riordan array read by rows, corresponding to array in A180562.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 10, 5, 2, 1, 26, 13, 6, 2, 1, 70, 35, 16, 7, 2, 1, 192, 96, 45, 19, 8, 2, 1, 534, 267, 126, 56, 22, 9, 2, 1, 1500, 750, 357, 160, 68, 25, 10, 2, 1, 4246, 2123, 1016, 463, 198, 81, 28, 11, 2, 1, 12092, 6046, 2907, 1337, 586, 240, 95, 31
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2014

Keywords

Comments

Take lower triangle of square array in A180562, read from right to left.
Row sums are in A225034. - Philippe Deléham, Mar 25 2014
Riordan array (f(x), (f(x)-1)/(2*f(x))) where f(x) = sqrt((1+x)/(1-3*x)). - Philippe Deléham, Mar 25 2014

Examples

			Triangle begins:
1
2 1
4 2 1
10 5 2 1
26 13 6 2 1
70 35 16 7 2 1
192 96 45 19 8 2 1
...
192 = 2*96, 96 = 70 - 35 + 16 + 45, 45 = 35 - 16 + 7 + 19, etc. - _Philippe Deléham_, Mar 25 2014
Production matrix is:
2, 1
0, 0, 1
2, 1, 0, 1
2, 1, 1, 0, 1
2, 1, 1, 1, 0, 1
2, 1, 1, 1, 1, 0, 1
2, 1, 1, 1, 1, 1, 0, 1
2, 1, 1, 1, 1, 1, 1, 0, 1
... _Philippe Deléham_, Sep 15 2014
		

Crossrefs

Cf. A180562.
Cf. T(n,0) = A025565(n+1), T(n+1,1) = A005773(n+1), T(n+2,2) = A005717(n+1), A225034 (Row sums). - Philippe Deléham, Mar 25 2014

Formula

T(0,0) = 1, T(n,0) = 2*T(n,1) for n>0, T(n,k) = T(n-1,k-1) - T(n-1,k) + T(n-1,k+1) + T(n,k+1) for k>0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 25 2014

Extensions

More terms from Philippe Deléham, Mar 25 2014

A353133 Coefficients of expansion of f(x) = (1+x*m(x))^5*(x^2*(x*m(x))'+1) where m(x) is the generating function for A001006.

Original entry on oeis.org

1, 5, 16, 47, 136, 392, 1130, 3262, 9434, 27337, 79364, 230815, 672380, 1961635, 5730860, 16763685, 49093260, 143924943, 422352816, 1240529133, 3646710456, 10728322770, 31584554610, 93048320820, 274292367650, 809044988695, 2387642856380, 7050001551361, 20826624824612, 61552574382856
Offset: 0

Views

Author

Kassie Archer, Apr 25 2022

Keywords

Comments

2*x^7*f(x) is the generating function for the number of Dyck paths with L(D)=7 where L(D) is the product of binomial coefficients (u_i(D)+d_i(D) choose u_i(D)), where u_i(D) is the number of up-steps between the i-th and (i+1)-st down step and d_i(D) is the number of down-steps between the i-th and (i+1)-st up step.

Crossrefs

Programs

  • PARI
    m(x) = (1-x-sqrt(1-2*x-3*(x^2)))/(2*(x^2));
    my(x='x+O('x^30)); Vec((1+x*m(x))^5*(x^2*(x*m(x))'+1)) \\ Michel Marcus, Apr 25 2022
Showing 1-2 of 2 results.