A225044 Number of partitions of n into non-triangular numbers, cf. A014132.
1, 0, 1, 0, 2, 1, 2, 2, 4, 4, 5, 6, 9, 10, 13, 14, 21, 22, 30, 32, 44, 48, 62, 69, 89, 100, 124, 141, 173, 198, 239, 274, 330, 377, 450, 514, 611, 697, 823, 939, 1104, 1258, 1470, 1676, 1950, 2220, 2572, 2927, 3381, 3841, 4420, 5019, 5759, 6529, 7470, 8460
Offset: 0
Keywords
Examples
a(10) = #{8+2, 5+5, 4+4+2, 4+2+2+2, 2+2+2+2+2} = 5; a(11) = #{11, 9+2, 7+4, 7+2+2, 5+4+2, 5+2+2+2} = 6; a(12) = #{12, 8+4, 8+2+2, 7+5, 5+5+2, 4+4+4, 4+4+2+2, 4+2+2+2+2, 6x2} = 9; a(13) = #{13, 11+2, 9+4, 9+2+2, 8+5, 7+4+2, 7+2+2+2, 5+4+4, 5+4+2+2, 5+2+2+2+2} = 10.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a225044 = p a014132_list where p _ 0 = 1 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-
Maple
b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n or issqr(8*i+1), 0, b(n-i, i)))) end: a:= n-> b(n$2): seq(a(n), n=0..60); # Alois P. Heinz, Nov 13 2015
-
Mathematica
t = Table[n (n + 1)/2, {n, 1, 200}] ; p[n_] := IntegerPartitions[n, All, Complement[Range@n, t]]; Table[p[n], {n, 0, 12}] (*shows partitions*) a[n_] := Length@p@n; a /@ Range[0, 80] (* Clark Kimberling, Mar 09 2014 *) b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n || IntegerQ @ Sqrt[8*i + 1], 0, b[n - i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
Formula
G.f.: Product_{k>=1} (1 - x^(k*(k+1)/2))/(1 - x^k). - Ilya Gutkovskiy, Dec 30 2016
a(n) ~ sqrt(2) * exp(Pi*sqrt(2*n/3) - Zeta(3/2) * (3*n/2)^(1/4) - 3*Zeta(3/2)^2 / (16*Pi)) / sqrt(n). - Vaclav Kotesovec, Jan 01 2017