A225058 a(4*n) = n-1. a(2*n+1) = a(4*n+2) = 2*n+1.
-1, 1, 1, 3, 0, 5, 3, 7, 1, 9, 5, 11, 2, 13, 7, 15, 3, 17, 9, 19, 4, 21, 11, 23, 5, 25, 13, 27, 6, 29, 15, 31, 7, 33, 17, 35, 8, 37, 19, 39, 9, 41, 21, 43, 10, 45, 23, 47, 11, 49, 25, 51, 12, 53, 27, 55, 13, 57, 29, 59, 14, 61, 31, 63, 15, 65, 33, 67, 16, 69
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1).
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((-1+x+x^2+3*x^3+3*x^5+x^6+x^7+2*x^4)/((-1+x)^2*(1+x)^2*(x^2+1)^2))); // G. C. Greubel, Sep 20 2018 -
Mathematica
a[n_] := 1/16*(11*n-(-1)^n*(5*n+4)-2*(n+4)*Re[I^n]-4); Table[a[n], {n, 0, 47}] (* Jean-François Alcover, Apr 30 2013 *) LinearRecurrence[{0,0,0,2,0,0,0,-1},{-1,1,1,3,0,5,3,7},80] (* Harvey P. Dale, Jul 14 2019 *)
-
PARI
x='x+O('x^50); Vec((-1+x+x^2+3*x^3+3*x^5+x^6+x^7+2*x^4)/((-1+x)^2*(1+x)^2*(x^2+1)^2)) \\ G. C. Greubel, Sep 20 2018
Formula
a(n) = 2*a(n-4) - a(n-8).
a(n+4) - a(n) = A176895(n).
G.f.: (-1+x+x^2+3*x^3+3*x^5+x^6+x^7+2*x^4)/((-1+x)^2*(1+x)^2*(x^2+1)^2). - R. J. Mathar, Apr 28 2013
Comments