A225110 Numbers m such that S = Sum_{i = 1..q} 1/d(i) is an integer where d(i) are the divisors of m in increasing order, and q the smallest integer 1 < q <= tau(m) for m > 1; and a(1) = 1.
1, 6, 18, 28, 42, 54, 66, 78, 102, 114, 120, 126, 138, 162, 174, 180, 186, 196, 198, 222, 234, 246, 258, 282, 294, 306, 318, 342, 354, 366, 378, 402, 414, 426, 438, 462, 474, 486, 496, 498, 522, 534, 546, 558, 582, 594, 606, 618, 642, 654, 666, 672, 678, 702, 714
Offset: 1
Keywords
Examples
18 is in the sequence because the divisors of 18 are 1, 2, 3, 6, 9 and 18 => 1 + 1/2 + 1/3 + 1/6 = 2. 28 is in the sequence because 28 is a multiply-perfect numbers: the divisors are 1, 2, 4, 7, 14, 28 and 1 + 1/2 + 1/4 + 1/7 + 1/14 + 1/28 = 2. From _Michael De Vlieger_, Sep 15 2017: (Start) Records k and first positions n of records of q that pertain to a(n) for values less than or equal to 10^7: i k n a(n) ---------------------------- 1 1 1 1 2 4 2 6 3 6 4 28 4 10 39 496 5 14 608 8128 6 15 16 180 7 16 11 120 8 17 1543 20482 9 18 2521 33345 10 20 629 8415 11 21 145 1890 12 22 30824 407715 13 24 52 672 14 26 2908 38430 15 28 3034 40128 16 30 1917 25410 17 34 96461 1274100 18 35 1544 20496 19 43 61026 806190 20 45 7839 103530 21 54 5512 72800 22 58 74184 979992 23 69 6871 90720 24 77 270202 3571050 25 80 39625 523776 26 96 2284 30240 27 216 164870 2178540 (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): for n from 1 to 1000 do:x:=divisors(n):n1:=nops(x):s:=0:ii:=0:for q from 1 to n1 while(ii=0) do:s:=s+1/x[q]:if s=floor(s) and q>1 then ii:=1: printf(`%d, `,n):else fi:od:od:
-
Mathematica
Select[Range@ 714, Function[n, AnyTrue[If[n > 1, Rest@ #, #] &@ FoldList[Plus, 1/Divisors@ n], IntegerQ]]] (* Michael De Vlieger, Sep 15 2017 *)
-
PARI
isok(k) = if (k==1, return(1)); my(d=divisors(k), s=1); for (i=2, #d, s += 1/d[i]; if (denominator(s)==1, return(1));); \\ Michel Marcus, Feb 22 2025
Extensions
Name edited by Michel Marcus, Jun 13 2025
Comments