cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225125 Decimal expansion of Integral_{x=0..Pi/2} x^3*cosec(x) dx.

Original entry on oeis.org

1, 6, 9, 2, 9, 9, 2, 4, 6, 8, 4, 1, 3, 6, 0, 1, 2, 4, 4, 6, 7, 8, 0, 1, 3, 8, 3, 4, 8, 9, 8, 1, 0, 8, 7, 0, 8, 0, 7, 8, 6, 9, 8, 6, 7, 1, 5, 6, 8, 0, 7, 2, 3, 4, 9, 5, 6, 8, 8, 0, 1, 5, 7, 7, 8, 9, 4, 7, 6, 4, 3, 7, 2, 1, 3, 1, 9, 8, 7, 9, 8, 7, 2, 7, 9, 1, 8, 7, 3, 6, 3, 9, 6, 3, 5, 4, 4, 9, 4, 2
Offset: 1

Views

Author

Jean-François Alcover, Apr 30 2013

Keywords

Comments

The simpler Integral_{x=0..Pi/2} x*cosec(x) dx evaluates as 2*Catalan.

Examples

			1.6929924684136012446780138348981087080786986715680723495688...
		

Crossrefs

Programs

  • Mathematica
    3*Catalan*Pi^2/2-1/128*(PolyGamma[3, 1/4]-PolyGamma[3, 3/4]); (* or *)
    3*Catalan*Pi^2/2-3/64*(Zeta[4, 1/4]-Zeta[4, 3/4]) // RealDigits[#, 10, 100] & // First
    RealDigits[Integrate[x^3 Csc[x],{x,0,Pi/2}],10,120][[1]] (* Harvey P. Dale, Jun 16 2025 *)
  • PARI
    3*Catalan*Pi^2/2-3/64*(zetahurwitz(4,1/4)-zetahurwitz(4,3/4)) \\ Charles R Greathouse IV, Jan 31 2018

Formula

Equals 3*Catalan*Pi^2/2-1/128*(polygamma(3, 1/4)-polygamma(3, 3/4)).