cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A225208 Engel expansion of the positive root of x^x^x^x = 2.

Original entry on oeis.org

1, 3, 3, 52, 106, 260, 279, 334, 491, 536, 728, 1161, 5678, 15183, 41437, 189034, 281965, 1118629, 3473978, 32869874, 82525851, 159312757, 424570638, 472381891, 563118608, 579529452, 1426303902, 2330077798, 2991863700, 25850322702, 34547004920, 37294688664
Offset: 1

Views

Author

Alois P. Heinz, May 01 2013

Keywords

Comments

It is not known if the positive root of x^x^x^x = 2 is a rational number and, in consequence, whether this sequence is finite or not.

Examples

			1.44660143242986417459733398759766148...
		

References

  • F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A225134 (decimal expansion), A225153 (continued fraction).

Programs

  • Maple
    Digits:= 500:
    c:= solve(x^(x^(x^x))=2, x):
    engel:= (r, n)-> `if`(n=0 or r=0, NULL, [ceil(1/r),
            engel(r*ceil(1/r)-1, n-1)][]):
    engel(evalf(c), 39);

A225134 Decimal expansion of the positive root of x^x^x^x = 2.

Original entry on oeis.org

1, 4, 4, 6, 6, 0, 1, 4, 3, 2, 4, 2, 9, 8, 6, 4, 1, 7, 4, 5, 9, 7, 3, 3, 3, 9, 8, 7, 5, 9, 7, 6, 6, 1, 4, 8, 0, 6, 8, 7, 3, 2, 1, 0, 4, 2, 2, 8, 2, 2, 8, 0, 0, 2, 6, 3, 6, 3, 9, 0, 4, 7, 7, 2, 0, 9, 8, 5, 7, 0, 7, 6, 5, 9, 8, 3, 1, 0, 1, 6, 1, 4, 7, 4, 9, 2, 3, 5, 7, 2, 0, 0, 8, 1, 0, 9, 7, 6, 3, 0, 9, 9, 7, 5, 3
Offset: 1

Views

Author

Vladimir Reshetnikov, Apr 29 2013

Keywords

Comments

It is unknown if this root is rational, algebraic irrational, or transcendental.

Examples

			1.4466014324298641745973339875976614806873210422822800263639...
		

Crossrefs

Cf. A030798, A199550, A225153 (continued fraction), A225208 (Engel expansion).

Programs

  • Mathematica
    RealDigits[FindRoot[x^x^x^x == 2, {x, 1}, WorkingPrecision -> 110][[1,2]], 10, 105][[1]]
  • PARI
    solve(x=1,2,x^x^x^x-2) \\ Charles R Greathouse IV, Apr 15 2014
Showing 1-2 of 2 results.