cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A225153 Continued fraction for the positive root of x^x^x^x = 2 (A225134).

Original entry on oeis.org

1, 2, 4, 5, 1, 1, 184, 1, 1, 8, 1, 7, 1, 12, 3, 1, 4, 2, 1, 2, 1, 125, 1, 2, 1, 1, 2, 2, 5, 12, 7, 1, 8, 2, 1, 6, 1, 3, 2, 1, 2, 1, 14, 1, 1, 1, 3, 1, 1, 6485, 1, 1, 1, 3, 1, 2, 1, 1, 1, 17, 1, 2, 3, 3, 3, 2, 7, 1, 2, 1, 8, 1, 9, 1, 1, 7, 1, 4, 9, 1, 1, 1, 1, 3, 2
Offset: 0

Views

Author

Vladimir Reshetnikov, Apr 30 2013

Keywords

Comments

x = 1.44660143242986417... = 1 + 1/(2 + 1/(4 + 1/(5 + 1/(1 + 1/(1 + 1/(184 + 1/(...))))))).
This constant is sometimes called the 4th super-root of 2.
It is unknown if it is rational, algebraic irrational, or transcendental. Hence, it is unknown if this continued fraction is aperiodic, or even if it is infinite.

Crossrefs

Cf. A225134 (decimal expansion), A225208 (Engel expansion), A153510 (second super-root of 2).

Programs

  • Mathematica
    ContinuedFraction[FindRoot[x^x^x^x == 2, {x, 1}, WorkingPrecision -> 110][[1, 2]], 105]

Extensions

Offset changed by Andrew Howroyd, Jul 07 2024

A225208 Engel expansion of the positive root of x^x^x^x = 2.

Original entry on oeis.org

1, 3, 3, 52, 106, 260, 279, 334, 491, 536, 728, 1161, 5678, 15183, 41437, 189034, 281965, 1118629, 3473978, 32869874, 82525851, 159312757, 424570638, 472381891, 563118608, 579529452, 1426303902, 2330077798, 2991863700, 25850322702, 34547004920, 37294688664
Offset: 1

Views

Author

Alois P. Heinz, May 01 2013

Keywords

Comments

It is not known if the positive root of x^x^x^x = 2 is a rational number and, in consequence, whether this sequence is finite or not.

Examples

			1.44660143242986417459733398759766148...
		

References

  • F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A225134 (decimal expansion), A225153 (continued fraction).

Programs

  • Maple
    Digits:= 500:
    c:= solve(x^(x^(x^x))=2, x):
    engel:= (r, n)-> `if`(n=0 or r=0, NULL, [ceil(1/r),
            engel(r*ceil(1/r)-1, n-1)][]):
    engel(evalf(c), 39);
Showing 1-2 of 2 results.