cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A225206 Number of Pythagorean quadruples (a, b, c, d) with d < 10^n.

Original entry on oeis.org

6, 571, 56268, 5614390, 561232920, 56120665334, 5612026652893, 561202243017532, 56120219419339591
Offset: 1

Views

Author

Arkadiusz Wesolowski, May 01 2013

Keywords

Comments

a(n) ~ Pi*A225207(n)/(1+G), where G is Catalan's constant (A006752).

Examples

			a(1) = 6 because there are six solutions (a, b, c, d) as follows: (1, 2, 2, 3), (2, 4, 4, 6), (2, 3, 6, 7), (1, 4, 8, 9), (3, 6, 6, 9), (4, 4, 7, 9) with d < 10.
		

Crossrefs

Formula

a(n) = Sum_{k=1..10^n-1} A181786(k). - Max Alekseyev, Feb 28 2023

Extensions

a(4) from Giovanni Resta, May 01 2013
a(5)-a(9) from Max Alekseyev, Feb 28 2023

A360946 Number of Pythagorean quadruples with inradius n.

Original entry on oeis.org

1, 3, 6, 10, 9, 19, 16, 25, 29, 27, 27, 56, 31, 51, 49, 61, 42, 91, 52, 71, 89, 86, 63, 142, 64, 95, 116, 132, 83, 153, 90, 144, 149, 133, 108, 238, 108, 162, 169, 171, 122, 284, 130, 219, 200, 196, 145, 340, 174, 201, 231, 239, 164, 364, 176, 314, 278, 256, 190, 399, 195, 281, 360, 330
Offset: 1

Views

Author

Keywords

Comments

A Pythagorean quadruple is a quadruple (a,b,c,d) of positive integers such that a^2 + b^2 + c^2 = d^2 with a <= b <= c. Its inradius is (a+b+c-d)/2, which is a positive integer.
For every positive integer n, there is at least one Pythagorean quadruple with inradius n.

Examples

			For n=1 the a(1)=1 solution is (1,2,2,3).
For n=2 the a(2)=3 solutions are (1,4,8,9), (2,3,6,7) and (2,4,4,6).
For n=3 the a(3)=6 solutions are (1,6,18,19), (2,5,14,15), (2,6,9,11), (3,4,12,13), (3,6,6,9) and (4,4,7,9).
		

References

  • J. M. Blanco Casado, J. M. Sánchez Muñoz, and M. A. Pérez García-Ortega, El Libro de las Ternas Pitagóricas, Preprint 2023.

Crossrefs

Programs

  • Mathematica
    n=50;
    div={};suc={};A={};
    Do[A=Join[A,{Range[1,(1+1/Sqrt[3])q]}],{q,1,n}];
    Do[suc=Join[suc,{Length[div]}];div={};For [i=1,i<=Length[Extract[A,q]],i++,div=Join[div,Intersection[Divisors[q^2+(Extract[Extract[A,q],i]-q)^2],Range[2(Extract[Extract[A,q],i]-q),Sqrt[q^2+(Extract[Extract[A,q],i]-q)^2]]]]],{q,1,n}];suc=Rest[Join[suc,{Length[div]}]];matriz={{"q"," ","cuaternas"}};For[j=1,j<=n,j++,matriz=Join[matriz,{{j," ",Extract[suc,j]}}]];MatrixForm[Transpose[matriz]]

A379744 Number of primitive Pythagorean quintuples (a, b, c, d, e) with 0 < a <= b <= c <= d <= e <= 10^n.

Original entry on oeis.org

10, 5568, 5302303, 5279762116, 5277410421368, 5277177914347752, 5277147974562930196, 5277145259376056385184, 5277145005746992952994327
Offset: 1

Views

Author

Asif Ahmed, Dec 31 2024

Keywords

Comments

A Pythagorean quintuple (x,y,z,w,u) is a solution to x^2+y^2+z^2+w^2=u^2.

Examples

			a(1) = 10 because there are ten primitive solutions (a, b, c, d, e) as follows: (1, 1, 1, 1, 2), (1, 1, 3, 5, 6), (1, 1, 7, 7, 10), (1, 2, 2, 4, 5), (1, 3, 3, 9, 10), (1, 4, 4, 4, 7), (1, 5, 5, 7, 10), (2, 2, 3, 8, 9), (2, 2, 4, 5, 7), and (2, 4, 5, 6, 9) with e <= 10.
		

Crossrefs

Formula

Limit_{n -> oo} a(n)/ 10^(3*n) = 5/(96*Pi^2) ~ 0.005277144981371758929368722042173314526269...
a(n) ~ 5*10^(3*n)/(96*Pi^2) + (3/A - 1/G)*10^(2*n)/64 + (1/(2*sqrt(3)) - 1/(4*sqrt(2)))*10^n/Pi, where A is the Dirichlet L-function value evaluated at s = 2 for the Dirichlet character with modulus 8 and index 4, and G is the Catalan's constant. (A ~ 1.064734171043503370392827451461668889483, G ~ 0.9159655941772190150546035149323841107741)
Showing 1-3 of 3 results.