cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A225207 Number of primitive Pythagorean quadruples (a, b, c, d) with d < 10^n.

Original entry on oeis.org

4, 347, 34163, 3412143, 341175325, 34117055318, 3411700692939, 341170025540426, 34117002022924247
Offset: 1

Views

Author

Arkadiusz Wesolowski, May 01 2013

Keywords

Comments

a(n) ~ (1+G)*A225206(n)/Pi, where G is Catalan's constant (A006752).

Examples

			a(1) = 4 because there are four primitive solutions (a, b, c, d) as follows: (1, 2, 2, 3), (2, 3, 6, 7), (1, 4, 8, 9), (4, 4, 7, 9) with d < 10.
		

Crossrefs

Extensions

a(4) from Giovanni Resta, May 01 2013
a(5)-a(9) from Max Alekseyev, Feb 28 2023

A352881 a(n) is the minimal number z having the largest number of solutions to the Diophantine equation 1/z = 1/x + 1/y such that 1 <= x <= y <= 10^n.

Original entry on oeis.org

2, 12, 60, 840, 9240, 55440, 720720, 6126120, 116396280, 232792560, 5354228880, 26771144400, 465817912560, 4813451763120, 24067258815600, 144403552893600, 2671465728531600, 36510031623265200, 219060189739591200, 4709794079401210800, 18839176317604843200, 221360321731856907600
Offset: 1

Views

Author

Darío Clavijo, Apr 06 2022

Keywords

Comments

Solving for z gives z = (x*y) / (x+y), so x*y == 0 (mod x+y).
All known terms are from A025487:
a(1) = 2 = 2;
a(2) = 12 = 2^2 * 3;
a(3) = 60 = 2^2 * 3 * 5;
a(4) = 840 = 2^3 * 3 * 5 * 7;
a(5) = 9240 = 2^3 * 3 * 5 * 7 * 11.
If a solution to the equation 1/z = 1/x + 1/y is found such that gcd(x,y,z) is a square, then x+y, x*y*z, and (x-y)^2 + (2*z)^2 are also squares.
For all solutions, x^2 + y^2 + z^2 is a square.
The sequence is indeed a subsequence of A025487, and likely of A126098 as well. - Max Alekseyev, Mar 01 2023
a(n) < 5*10^(n-1). - Max Alekseyev, Mar 01 2023

Examples

			For n=1, we have the following, where r = (x*y) mod (x+y). (In the last four columns, each number marked by an asterisk is a square.)
.
  r  z  x  y  x*y  x+y  x*y*z  x^2+y^2+z^2
  -  -  -  -  ---  ---  -----  -----------
  0  1  2  2    4*   4*     4*           9* (solution)
  2  1  2  4    8    6      8           21
  4  1  2  6   12    8     12           41
  6  1  2  8   16*  10     16*          69
  3  1  3  3    9    6      9*          19
  0  2  3  6   18*   9*    36*          49* (solution)
  3  2  3  9   27   12     54           94
  0  2  4  4   16*   8     32           36* (solution)
  8  2  4  8   32   12     64*          84
  5  2  5  5   25*  10     50           54
  0  3  6  6   36*  12    108           81* (solution)
  7  3  7  7   49*  14    147          107
  0  4  8  8   64*  16*   256*         144* (solution)
  9  4  9  9   81*  18    324*         178
.
z = 2 has the largest number of solutions, so a(1) = 2.
The number of solutions for the resulting z cannot exceed A018892(z).
		

Crossrefs

Programs

  • PARI
    a(n)=my(bc=0,bk=0,L=10^n);for(k=1,L-1,my(c=0,k2=k^2);for(d=max(1,k2\(L-k)+1),k,if(k2%d==0,c++););if(c>bc,bc=c;bk=k););return(bk); \\ Darío Clavijo, Mar 03 2025
  • Python
    def a(n):
        # k=x*y and d=x+y
        bc, bk, L = 0, None, 10**n
        for k in range(1, L):
            c, k2 = 0, k * k
            for d in range(max(1, k2 // (L - k) + 1), k + 1):
                if k2 % d == 0: c += 1
            if c > bc:
                bc, bk = c, k
        return bk
    

Extensions

a(6) from Chai Wah Wu, Apr 10 2022
a(7)-a(22) from Max Alekseyev, Mar 01 2023

A360946 Number of Pythagorean quadruples with inradius n.

Original entry on oeis.org

1, 3, 6, 10, 9, 19, 16, 25, 29, 27, 27, 56, 31, 51, 49, 61, 42, 91, 52, 71, 89, 86, 63, 142, 64, 95, 116, 132, 83, 153, 90, 144, 149, 133, 108, 238, 108, 162, 169, 171, 122, 284, 130, 219, 200, 196, 145, 340, 174, 201, 231, 239, 164, 364, 176, 314, 278, 256, 190, 399, 195, 281, 360, 330
Offset: 1

Views

Author

Keywords

Comments

A Pythagorean quadruple is a quadruple (a,b,c,d) of positive integers such that a^2 + b^2 + c^2 = d^2 with a <= b <= c. Its inradius is (a+b+c-d)/2, which is a positive integer.
For every positive integer n, there is at least one Pythagorean quadruple with inradius n.

Examples

			For n=1 the a(1)=1 solution is (1,2,2,3).
For n=2 the a(2)=3 solutions are (1,4,8,9), (2,3,6,7) and (2,4,4,6).
For n=3 the a(3)=6 solutions are (1,6,18,19), (2,5,14,15), (2,6,9,11), (3,4,12,13), (3,6,6,9) and (4,4,7,9).
		

References

  • J. M. Blanco Casado, J. M. Sánchez Muñoz, and M. A. Pérez García-Ortega, El Libro de las Ternas Pitagóricas, Preprint 2023.

Crossrefs

Programs

  • Mathematica
    n=50;
    div={};suc={};A={};
    Do[A=Join[A,{Range[1,(1+1/Sqrt[3])q]}],{q,1,n}];
    Do[suc=Join[suc,{Length[div]}];div={};For [i=1,i<=Length[Extract[A,q]],i++,div=Join[div,Intersection[Divisors[q^2+(Extract[Extract[A,q],i]-q)^2],Range[2(Extract[Extract[A,q],i]-q),Sqrt[q^2+(Extract[Extract[A,q],i]-q)^2]]]]],{q,1,n}];suc=Rest[Join[suc,{Length[div]}]];matriz={{"q"," ","cuaternas"}};For[j=1,j<=n,j++,matriz=Join[matriz,{{j," ",Extract[suc,j]}}]];MatrixForm[Transpose[matriz]]
Showing 1-3 of 3 results.