cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225244 Number of partitions of n into squarefree divisors of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 8, 2, 5, 4, 11, 2, 27, 2, 14, 14, 9, 2, 64, 2, 40, 18, 20, 2, 125, 6, 23, 10, 53, 2, 742, 2, 17, 26, 29, 26, 343, 2, 32, 30, 195, 2, 1654, 2, 79, 136, 38, 2, 729, 8, 341, 38, 92, 2, 1000, 38, 265, 42, 47, 2, 14188, 2, 50, 184, 33, 44, 5257, 2
Offset: 0

Views

Author

Reinhard Zumkeller, May 05 2013

Keywords

Comments

a(n) <= A018818(n);
a(n) = A018818(n) iff n is squarefree: a(A005117(n)) = A018818(A005117(n));
a(A000040(n)) = 2.

Examples

			a(8) = #{2+2+2+2, 2+2+2+1+1, 2+2+1+1+1+1, 2+6x1, 8x1} = 5;
a(9) = #{3+3+3, 3+3+1+1+1, 3+1+1+1+1+1+1, 9x1} = 4;
a(10) = #{10, 5+5, 5+2+2+1, 5+2+1+1+1, 5+5x1, 2+2+2+2+2, 2+2+2+2+1+1, 2+2+2+1+1+1+1, 2+2+6x1, 2+8x1, 10x1} = 11;
a(11) = #{11, 1+1+1+1+1+1+1+1+1+1+1} = 2;
a(12) = #{6+6, 6+3+3, 6+3+2+1, 6+3+1+1+1, 6+2+2+2, 6+2+2+1+1, 6+2+1+1+1+1, 6+6x1, 3+3+3+3, 3+3+3+2+1, 3+3+3+1+1+1, 3+3+2+2+2, 3+3+2+2+1+1, 3+3+2+4x1, 3+3+6x1, 3+2+2+2+2+1, 3+2+2+2+1+1+1, 3+2+2+5x1, 3+2+7x1, 3+8x1, 2+2+2+2+2+2, 2+2+2+2+2+1+1, 2+2+2+2+1+1+1+1, 2+2+2+6x1, 2+2+8x1, 2+10x1, 12x1} = 27;
a(13) = #{11, 1+1+1+1+1+1+1+1+1+1+1+1+1} = 2;
a(14) = #{14, 7+7, 7+2+2+2+1, 7+2+2+1+1+1, 7+2+5x1, 7+7x1, 7x2, 6x2+1+1, 5x2+1+1+1+1, 4x2+6x1, 2+2+2+8x1, 2+2+10x1, 2+12x1, 14x1} = 14;
a(15) = #{15, 5+5+5, 5+5+3+1+1, 5+5+5x1, 5+3+3+3+1, 5+3+3+1+1+1+1, 5+3+7x1, 5+10x1, 3+3+3+3+3, 3+3+3+3+1+1+1, 3+3+3+6x1, 3+3+9x1, 3+12x1, 15x1} = 14.
		

Crossrefs

Programs

  • Haskell
    a225244 n = p (a206778_row n) n where
       p _          0 = 1
       p []         _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
  • Maple
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([select(issqrfree, divisors(n))[]]):
          b:= proc(m, i) option remember; `if`(m=0 or i=1, 1,
                `if`(i<1, 0, b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i))))
              end; forget(b):
          b(n, nops(l))
        end:
    seq(a(n), n=0..100); # Alois P. Heinz, Feb 05 2014
  • Mathematica
    a[0] = 1; a[n_] := Module[{b, l}, l = Select[Divisors[n], SquareFreeQ]; b[m_, i_] := b[m, i] = If[m == 0 || i == 1, 1, If[i < 1, 0, b[m, i - 1] + If[l[[i]] > m, 0, b[m - l[[i]], i]]]]; b[n, Length[l]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 27 2015, after Alois P. Heinz *)

Formula

a(n) = [x^n] Product_{d|n, mu(d) != 0} 1/(1 - x^d), where mu() is the Moebius function (A008683). - Ilya Gutkovskiy, Jul 26 2017