cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A225255 a(k) such that A225252 column k of T(n,k) = n*k^2 - a(k) for large n.

Original entry on oeis.org

-1, 0, 2, 5, 8, 13, 17, 23, 28, 33, 39, 47, 53, 61, 69, 76, 83, 92, 100, 110, 118, 127, 138, 150, 159, 168, 179, 190, 200, 212, 222, 234, 245, 258, 272, 283, 294, 307, 321, 336, 348, 362, 374, 388, 402, 415, 430, 446, 459, 472, 486, 502, 518, 535, 549, 564, 578, 594, 611
Offset: 1

Views

Author

R. H. Hardin May 04 2013

Keywords

A225254 Number of distinct values of the sum of 3 products of two 0..n integers.

Original entry on oeis.org

1, 4, 12, 25, 43, 67, 95, 130, 169, 215, 267, 324, 385, 454, 527, 606, 692, 784, 880, 983, 1090, 1205, 1325, 1449, 1578, 1716, 1860, 2008, 2162, 2323, 2488, 2661, 2838, 3022, 3210, 3403, 3605, 3813, 4025, 4242, 4464, 4695, 4930, 5173, 5420, 5673, 5933, 6197
Offset: 0

Views

Author

R. H. Hardin, May 04 2013

Keywords

Crossrefs

Row 3 of A225252.

Programs

  • Python
    from itertools import combinations_with_replacement
    def A225254(n): return len({sum(x) for x in combinations_with_replacement({i*j for i in range(n+1) for j in range(i+1)},3)}) # Chai Wah Wu, Oct 13 2023

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 13 2023

A225253 Number of distinct values of the sum of 2 products of two 0..n integers.

Original entry on oeis.org

1, 3, 8, 16, 27, 42, 59, 81, 105, 134, 167, 203, 241, 285, 331, 381, 436, 495, 556, 622, 690, 764, 841, 920, 1002, 1091, 1184, 1279, 1378, 1482, 1588, 1700, 1813, 1932, 2053, 2177, 2308, 2443, 2579, 2719, 2862, 3012, 3164, 3322, 3481, 3645, 3814, 3985, 4158, 4339
Offset: 0

Views

Author

R. H. Hardin, May 04 2013

Keywords

Examples

			a(3) = 16 as the possible products i*j where 0 <= i, j <= 3 are 0, 1, 2, 3, 4, 6, 9. From these numbers we can find the 16 distinct sums, listed with a few examples, 0, 1, 2, 3, 4, 5, 6, 7 = 3+4, 8, 9, 10, 11, 12 = 6+6, 13 = 4+9, 15, 18. - _David A. Corneth_, Sep 07 2023
		

Crossrefs

Row 2 of A225252.

Programs

  • PARI
    a(n) = #setbinop((x,y)->x+y, setbinop((x,y)->x*y, [0..n])); \\ Michel Marcus, Sep 06 2023
    
  • PARI
    \\ See PARI link. David A. Corneth, Sep 07 2023
    
  • Python
    from itertools import combinations_with_replacement
    def A225253(n): return len({x+y for x,y in combinations_with_replacement({i*j for i in range(n+1) for j in range(i+1)},2)}) # Chai Wah Wu, Oct 13 2023

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 13 2023

A225256 Minimum value unattainable as the sum of 2 attained values of a*b with a,b 0..n integers.

Original entry on oeis.org

3, 7, 14, 23, 38, 47, 68, 87, 115, 147, 183, 203, 245, 291, 341, 395, 453, 503, 568, 619, 691, 767, 827, 887, 973, 1063, 1157, 1255, 1357, 1463, 1573, 1631, 1747, 1867, 1991, 2119, 2251, 2317, 2455, 2597, 2743, 2893, 3047, 3205, 3367, 3533, 3703, 3791, 3967
Offset: 1

Views

Author

R. H. Hardin, May 04 2013

Keywords

Comments

Related to A225252.

Crossrefs

Programs

  • PARI
    a(n) = my(v=setbinop((x,y)->x+y, setbinop((x,y)->x*y, [0..n]))); for(k=0, vecmax(v)+1, if (!vecsearch(v, k), return(k))); \\ Michel Marcus, Sep 07 2023

A225257 Minimum value unattainable as the sum of 3 attained values of a*b with a,b 0..n integers.

Original entry on oeis.org

4, 11, 23, 39, 63, 83, 117, 151, 196, 247, 304, 347, 414, 487, 566, 651, 742, 827, 929, 1019, 1132, 1251, 1356, 1463, 1598, 1739, 1886, 2039, 2198, 2363, 2534, 2711, 2894, 3059, 3219, 3418, 3623, 3834, 4051, 4239, 4467, 4701, 4941, 5187, 5439, 5697, 5961
Offset: 1

Views

Author

R. H. Hardin, May 04 2013

Keywords

Comments

Related to A225252.

Crossrefs

Showing 1-5 of 5 results.