A225372 Triangle read by rows: T(n,k) (1 <= k <= n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = -2.
1, 1, 1, 1, -2, 1, 1, -1, -1, 1, 1, -4, 6, -4, 1, 1, -3, 2, 2, -3, 1, 1, -6, 15, -20, 15, -6, 1, 1, -5, 9, -5, -5, 9, -5, 1, 1, -8, 28, -56, 70, -56, 28, -8, 1, 1, -7, 20, -28, 14, 14, -28, 20, -7, 1, 1, -10, 45, -120, 210, -252, 210, -120, 45, -10, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, -2, 1; 1, -1, -1, 1; 1, -4, 6, -4, 1; 1, -3, 2, 2, -3, 1; 1, -6, 15, -20, 15, -6, 1; 1, -5, 9, -5, -5, 9, -5, 1; 1, -8, 28, -56, 70, -56, 28, -8, 1; 1, -7, 20, -28, 14, 14, -28, 20, -7, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
function T(n,k,m) if k eq 1 or k eq n then return 1; else return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m); end if; return T; end function; A225372:= func< n,k | T(n,k,-2) >; [A225372(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 17 2022
-
Maple
T:=proc(n,k,l) option remember; if (n=1 or k=1 or k=n) then 1 else (l*n-l*k+1)*T(n-1,k-1,l)+(l*k-l+1)*T(n-1,k,l); fi; end; for n from 1 to 14 do lprint([seq(T(n,k,-2),k=1..n)]); od;
-
Mathematica
T[n_, k_, l_] := T[n, k, l] = If[n == 1 || k == 1 || k == n, 1, (l*n-l*k+1)*T[n-1, k-1, l]+(l*k-l+1)*T[n-1, k, l]]; Table[T[n, k, -2], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 09 2014, translated from Maple *)
-
Sage
@CachedFunction def T(n,k,m): if (k==1 or k==n): return 1 else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m) def A225372(n,k): return T(n,k,-2) flatten([[ A225372(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 17 2022
Formula
T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), with T(n, 1) = T(n, n) = 1, and m = -2.
Sum_{k=1..n} T(n, k) = A130706(n-1). - G. C. Greubel, Mar 17 2022