A142458
Triangle T(n,k) read by rows: T(n,k) = 1 if k=1 or k=n, otherwise T(n,k) = (3*n-3*k+1)*T(n-1,k-1) + (3*k-2)*T(n-1,k).
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 166, 546, 166, 1, 1, 677, 5482, 5482, 677, 1, 1, 2724, 47175, 109640, 47175, 2724, 1, 1, 10915, 373809, 1709675, 1709675, 373809, 10915, 1, 1, 43682, 2824048, 23077694, 44451550, 23077694, 2824048, 43682, 1
Offset: 1
The rows n >= 1 and columns 1 <= k <= n look as follows:
1;
1, 1;
1, 8, 1;
1, 39, 39, 1;
1, 166, 546, 166, 1;
1, 677, 5482, 5482, 677, 1;
1, 2724, 47175, 109640, 47175, 2724, 1;
1, 10915, 373809, 1709675, 1709675, 373809, 10915, 1;
1, 43682, 2824048, 23077694, 44451550, 23077694, 2824048, 43682, 1;
Cf.
A225372 (m=-2),
A144431 (m=-1),
A007318 (m=0),
A008292 (m=1),
A060187 (m=2), this sequence (m=3),
A142459 (m=4),
A142560 (m=5),
A142561 (m=6),
A142562 (m=7),
A167884 (m=8),
A257608 (m=9).
-
A142458 := proc(n,k) if n = k then 1; elif k > n or k < 1 then 0 ;else (3*n-3*k+1)*procname(n-1,k-1)+(3*k-2)*procname(n-1,k) ; end if; end proc:
seq(seq(A142458(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Jun 04 2011
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m] ];
Table[T[n, k, 3], {n, 1, 10}, {k, 1, n}]//Flatten (* modified by G. C. Greubel, Mar 14 2022 *)
-
def T(n,k,m): # A142458
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
flatten([[T(n,k,3) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Mar 14 2022
Edited by the Associate Editors of the OEIS, Aug 28 2009
A142460
Triangle read by rows: T(n,k) (1<=k<=n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 5.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 83, 83, 1, 1, 514, 1826, 514, 1, 1, 3105, 28310, 28310, 3105, 1, 1, 18656, 376615, 905920, 376615, 18656, 1, 1, 111967, 4627821, 22403635, 22403635, 4627821, 111967, 1, 1, 671838, 54377008, 478781506, 940952670, 478781506, 54377008, 671838, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 12, 1;
1, 83, 83, 1;
1, 514, 1826, 514, 1;
1, 3105, 28310, 28310, 3105, 1;
1, 18656, 376615, 905920, 376615, 18656, 1;
1, 111967, 4627821, 22403635, 22403635, 4627821, 111967, 1;
1, 671838, 54377008, 478781506, 940952670, 478781506, 54377008, 671838, 1;
Cf.
A225372 (m=-2),
A144431 (m=-1),
A007318 (m=0),
A008292 (m=1),
A060187 (m=2),
A142458 (m=3),
A142459 (m=4), this sequence (m=5),
A142561 (m=6),
A142562 (m=7),
A167884 (m=8),
A257608 (m=9).
-
A142460 := proc(n, k) if n = k then 1; elif k > n or k < 1 then 0 ; else (5*n-5*k+1)*procname(n-1, k-1)+(5*k-4)*procname(n-1, k) ; end if; end proc:
seq(seq(A142459(n, k), k=1..n), n=1..10) ; # R. J. Mathar, May 11 2013
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m] ];
Table[T[n, k, 5], {n, 1, 10}, {k, 1, n}]//Flatten (* modified by G. C. Greubel, Mar 14 2022 *)
-
def T(n,k,m): # A142460
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
flatten([[T(n,k,5) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Mar 14 2022
A142461
Triangle read by rows: T(n,k) (1 <= k <= n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 6.
Original entry on oeis.org
1, 1, 1, 1, 14, 1, 1, 111, 111, 1, 1, 796, 2886, 796, 1, 1, 5597, 52642, 52642, 5597, 1, 1, 39210, 824271, 2000396, 824271, 39210, 1, 1, 274507, 11931033, 58614299, 58614299, 11931033, 274507, 1, 1, 1921592, 165260188, 1483533704, 2930714950, 1483533704, 165260188, 1921592, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 14, 1;
1, 111, 111, 1;
1, 796, 2886, 796, 1;
1, 5597, 52642, 52642, 5597, 1;
1, 39210, 824271, 2000396, 824271, 39210, 1;
1, 274507, 11931033, 58614299, 58614299, 11931033, 274507, 1;
For m = ...,-2,-1,0,1,2,3,4,5,6,7, ... we get ...,
A225372,
A144431,
A007318,
A008292,
A060187,
A142458,
A142459,
A142460, ...
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m]];
A142461[n_, k_]:= T[n, k, 6];
Table[A142461[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 17 2022 *)
-
@CachedFunction
def T(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A142461(n,k): return T(n,k,6)
flatten([[ A142461(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 17 2022
A142462
Triangle read by rows: T(n,k) (1<=k<=n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 7.
Original entry on oeis.org
1, 1, 1, 1, 16, 1, 1, 143, 143, 1, 1, 1166, 4290, 1166, 1, 1, 9357, 90002, 90002, 9357, 1, 1, 74892, 1621383, 3960088, 1621383, 74892, 1, 1, 599179, 27016857, 134142043, 134142043, 27016857, 599179, 1, 1, 4793482, 431017552, 3923731798, 7780238494, 3923731798, 431017552, 4793482, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 16, 1;
1, 143, 143, 1;
1, 1166, 4290, 1166, 1;
1, 9357, 90002, 90002, 9357, 1;
1, 74892, 1621383, 3960088, 1621383, 74892, 1;
1, 599179, 27016857, 134142043, 134142043, 27016857, 599179, 1;
For m = ...,-2,-1,0,1,2,3,4,5,6,7, ... we get ...,
A225372,
A144431,
A007318,
A008292,
A060187,
A142458,
A142459,
A142460,
A142461,
A142462, ...
-
function T(n,k,m)
if k eq 1 or k eq n then return 1;
else return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m);
end if; return T;
end function;
A142462:= func< n,k | T(n,k,7) >;
[A142462(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 17 2022
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m]];
A142462[n_, k_]:= T[n,k,7];
Table[A142462[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 17 2022 *)
-
@CachedFunction
def T(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A142462(n,k): return T(n,k,7)
flatten([[ A142462(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 17 2022
A167884
Triangle read by rows: T(n,k) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 8.
Original entry on oeis.org
1, 1, 1, 1, 18, 1, 1, 179, 179, 1, 1, 1636, 6086, 1636, 1, 1, 14757, 144362, 144362, 14757, 1, 1, 132854, 2941135, 7218100, 2941135, 132854, 1, 1, 1195735, 55446309, 277509955, 277509955, 55446309, 1195735, 1, 1, 10761672, 1001178268, 9211047544, 18315657030, 9211047544, 1001178268, 10761672, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 18, 1;
1, 179, 179, 1;
1, 1636, 6086, 1636, 1;
1, 14757, 144362, 144362, 14757, 1;
1, 132854, 2941135, 7218100, 2941135, 132854, 1;
1, 1195735, 55446309, 277509955, 277509955, 55446309, 1195735, 1;
For m = ...,-2,-1,0,1,2,3,4,5,6,7,8, ... we get ...,
A225372,
A144431,
A007318,
A008292,
A060187,
A142458,
A142459,
A142460,
A142461,
A142462,
A167884, ...
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
A167884[n_, k_]:= T[n,k,8];
Table[A167884[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 18 2022 *)
-
@CachedFunction
def T(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A167884(n,k): return T(n,k,8)
flatten([[ A167884(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 18 2022
Showing 1-5 of 5 results.
Comments