A225398 Triangle read by rows: absolute values of odd-numbered rows of A225433.
1, 1, 38, 1, 1, 676, 4806, 676, 1, 1, 10914, 362895, 1346780, 362895, 10914, 1, 1, 174752, 20554588, 263879264, 683233990, 263879264, 20554588, 174752, 1, 1, 2796190, 1063096365, 35677598760, 267248150610, 554291429748, 267248150610, 35677598760, 1063096365, 2796190, 1
Offset: 1
Examples
Triangle begins: 1; 1, 38, 1; 1, 676, 4806, 676, 1; 1, 10914, 362895, 1346780, 362895, 10914, 1; 1, 174752, 20554588, 263879264, 683233990, 263879264, 20554588, 174752, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the irregular triangle, flattened
Programs
-
Mathematica
(* First program *) t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-(m- 1))*t[n-1,k,m]]; T[n_, k_]:= T[n, k]= t[n+1, k+1, 3]; (* t(n,k,3) = A142458 *) Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(1+x), x], {n, 1, 14, 2}]] (* Second program *) t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-m +1)*t[n-1,k,m]]; (* t(n,k,3) = A142458 *) A225398[n_, k_]:= A225398[n, k]= Sum[(-1)^(k-j-1)*t[2*n,j+1,3], {j,0,k-1}]; Table[A225398[n, k], {n,12}, {k,2*n-1}] //Flatten (* G. C. Greubel, Mar 19 2022 *)
-
Sage
@CachedFunction def T(n, k, m): if (k==1 or k==n): return 1 else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m) def A142458(n, k): return T(n, k, 3) def A225398(n,k): return sum( (-1)^(k-j-1)*A142458(2*n, j+1) for j in (0..k-1) ) flatten([[A225398(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022
Formula
From G. C. Greubel, Mar 19 2022: (Start)
T(n, k) = Sum_{j=0..k-1} (-1)^(k-j-1)*A142458(2*n, j+1).
T(n, n-k) = T(n, k). (End)
Extensions
Edited by N. J. A. Sloane, May 11 2013