cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225398 Triangle read by rows: absolute values of odd-numbered rows of A225433.

Original entry on oeis.org

1, 1, 38, 1, 1, 676, 4806, 676, 1, 1, 10914, 362895, 1346780, 362895, 10914, 1, 1, 174752, 20554588, 263879264, 683233990, 263879264, 20554588, 174752, 1, 1, 2796190, 1063096365, 35677598760, 267248150610, 554291429748, 267248150610, 35677598760, 1063096365, 2796190, 1
Offset: 1

Views

Author

Roger L. Bagula, Apr 26 2013 (Entered by N. J. A. Sloane, May 06 2013)

Keywords

Examples

			Triangle begins:
  1;
  1,     38,        1;
  1,    676,     4806,       676,         1;
  1,  10914,   362895,   1346780,    362895,     10914,        1;
  1, 174752, 20554588, 263879264, 683233990, 263879264, 20554588, 174752, 1;
		

Crossrefs

Programs

  • Mathematica
    (* First program *)
    t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-(m- 1))*t[n-1,k,m]];
    T[n_, k_]:= T[n, k]= t[n+1, k+1, 3]; (* t(n,k,3) = A142458 *)
    Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(1+x), x], {n, 1, 14, 2}]]
    (* Second program *)
    t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-m +1)*t[n-1,k,m]]; (* t(n,k,3) = A142458 *)
    A225398[n_, k_]:= A225398[n, k]= Sum[(-1)^(k-j-1)*t[2*n,j+1,3], {j,0,k-1}];
    Table[A225398[n, k], {n,12}, {k,2*n-1}] //Flatten (* G. C. Greubel, Mar 19 2022 *)
  • Sage
    @CachedFunction
    def T(n, k, m):
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
    def A142458(n, k): return T(n, k, 3)
    def A225398(n,k): return sum( (-1)^(k-j-1)*A142458(2*n, j+1) for j in (0..k-1) )
    flatten([[A225398(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022

Formula

From G. C. Greubel, Mar 19 2022: (Start)
T(n, k) = Sum_{j=0..k-1} (-1)^(k-j-1)*A142458(2*n, j+1).
T(n, n-k) = T(n, k). (End)

Extensions

Edited by N. J. A. Sloane, May 11 2013