cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225412 Digits of the 10-adic integer (1/9)^(1/3).

Original entry on oeis.org

9, 2, 5, 1, 1, 7, 1, 3, 6, 2, 6, 3, 3, 8, 2, 1, 4, 1, 0, 2, 7, 1, 2, 2, 4, 6, 1, 6, 0, 1, 0, 1, 2, 7, 2, 8, 2, 8, 8, 3, 6, 7, 0, 7, 7, 7, 2, 2, 6, 2, 6, 9, 9, 6, 8, 1, 3, 2, 1, 5, 4, 3, 7, 4, 7, 7, 6, 9, 6, 1, 4, 0, 2, 0, 9, 6, 3, 6, 6, 1, 9, 1, 9, 9, 7, 4, 9, 8, 8, 7, 7, 3, 0, 8, 7, 7, 8, 8, 0, 8
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Comments

This is the 10's complement of A153042.
Equivalently, the 10-adic cube root of 1/9, i.e., x such that 9*x^3 = 1 (mod 10^n) for all n. - M. F. Hasler, Jan 02 2019

Examples

			       9^3 == -1      (mod 10).
      29^3 == -11     (mod 10^2).
     529^3 == -111    (mod 10^3).
    1529^3 == -1111   (mod 10^4).
   11529^3 == -11111  (mod 10^5).
  711529^3 == -111111 (mod 10^6).
		

Crossrefs

Cf. A309600, A319740 (10-adic cube root of 1/11).
Digits of 10-adic integers:
A153042 ((-1/9)^(1/3));
A225406 ( 9^(1/3));
A225409 ( (-9)^(1/3)).

Programs

  • Maple
    op([1,3],padic:-rootp(9*x^3  -1,  10, 101)); # Robert Israel, Aug 04 2019
  • PARI
    n=0; for(i=1, 100, m=(8*(10^i-1)/9)+1; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
    
  • PARI
    upto(N=100, m=1/3)=Vecrev(digits(lift(chinese(Mod((1/9+O(5^N))^m, 5^N), Mod((1/9+O(2^N))^m, 2^N)))), N) \\ Following Andrew Howroyd's code for A319740. - M. F. Hasler, Jan 02 2019
    
  • PARI
    Vecrev(digits(truncate(-(-1/9+O(10^100))^(1/3)))) \\ Seiichi Manyama, Aug 04 2019
    
  • Ruby
    def A225412(n)
      ary = [9]
      a = 9
      n.times{|i|
        b = (a + 7 * (9 * a ** 3 - 1)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225412(100) # Seiichi Manyama, Aug 13 2019

Formula

p = ...711529, q = A153042 = ...288471, p + q = 0. - Seiichi Manyama, Aug 04 2019
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 - 1) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 13 2019

Extensions

Name edited by Seiichi Manyama, Aug 04 2019