A225413 Triangle read by rows: T(n,k) = (A101164(n,k) - A014473(n,k))/2.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 6, 12, 6, 0, 0, 0, 0, 10, 30, 30, 10, 0, 0, 0, 0, 15, 60, 91, 60, 15, 0, 0, 0, 0, 21, 105, 215, 215, 105, 21, 0, 0, 0, 0, 28, 168, 435, 590, 435, 168, 28, 0, 0, 0, 0, 36, 252, 791, 1365, 1365, 791, 252, 36, 0, 0
Offset: 0
Examples
Triangle begins as: 0; 0, 0; 0, 0, 0; 0, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 3, 3, 0, 0; 0, 0, 6, 12, 6, 0, 0; 0, 0, 10, 30, 30, 10, 0, 0; 0, 0, 15, 60, 91, 60, 15, 0, 0; 0, 0, 21, 105, 215, 215, 105, 21, 0, 0; 0, 0, 28, 168, 435, 590, 435, 168, 28, 0, 0; 0, 0, 36, 252, 791, 1365, 1365, 791, 252, 36, 0, 0; 0, 0, 45, 360, 1330, 2800, 3571, 2800, 1330, 360, 45, 0, 0; 0, 0, 55, 495, 2106, 5250, 8197, 8197, 5250, 2106, 495, 55, 0, 0;
Links
- Reinhard Zumkeller, Rows n = 0..100 of table, flattened
Crossrefs
Programs
-
Haskell
a225413 n k = a225413_tabl !! n !! k a225413_row n = a225413_tabl !! n a225413_tabl = map (map (`div` 2)) $ zipWith (zipWith (-)) a101164_tabl a014473_tabl -- Reinhard Zumkeller, Jul 30 2013
-
Magma
A008288:= func< n,k | (&+[Binomial(n-j, j)*Binomial(n-2*j, k-j): j in [0..k]]) >; A225413:= func< n,k | (A008288(n,k) - 2*Binomial(n,k) + 1)/2 >; [A225413(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 08 2024
-
Mathematica
T[n_, k_]:= ((-1)^(n-k)*Hypergeometric2F1[-n+k,k+1,1,2] - 2*Binomial[n, k] +1)/2; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2024 *)
-
SageMath
def A008288(n,k): return sum(binomial(n-j,j)*binomial(n-2*j,k-j) for j in range(k+1)) def A225413(n,k): return (A008288(n,k) -2*binomial(n,k) +1)//2 flatten([[A225413(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 08 2024
Comments