cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225413 Triangle read by rows: T(n,k) = (A101164(n,k) - A014473(n,k))/2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 6, 12, 6, 0, 0, 0, 0, 10, 30, 30, 10, 0, 0, 0, 0, 15, 60, 91, 60, 15, 0, 0, 0, 0, 21, 105, 215, 215, 105, 21, 0, 0, 0, 0, 28, 168, 435, 590, 435, 168, 28, 0, 0, 0, 0, 36, 252, 791, 1365, 1365, 791, 252, 36, 0, 0
Offset: 0

Views

Author

Jeremy Gardiner, Jul 28 2013

Keywords

Comments

Has opposite parity to A140356, A155454.

Examples

			Triangle begins as:
  0;
  0,  0;
  0,  0,  0;
  0,  0,  0,   0;
  0,  0,  1,   0,    0;
  0,  0,  3,   3,    0,    0;
  0,  0,  6,  12,    6,    0,    0;
  0,  0, 10,  30,   30,   10,    0,    0;
  0,  0, 15,  60,   91,   60,   15,    0,    0;
  0,  0, 21, 105,  215,  215,  105,   21,    0,    0;
  0,  0, 28, 168,  435,  590,  435,  168,   28,    0,   0;
  0,  0, 36, 252,  791, 1365, 1365,  791,  252,   36,   0,  0;
  0,  0, 45, 360, 1330, 2800, 3571, 2800, 1330,  360,  45,  0,  0;
  0,  0, 55, 495, 2106, 5250, 8197, 8197, 5250, 2106, 495, 55,  0,  0;
		

Crossrefs

3rd column = A000217 (triangular numbers).
4th column = A027480 (n(n+1)(n+2)/2).

Programs

  • Haskell
    a225413 n k = a225413_tabl !! n !! k
    a225413_row n = a225413_tabl !! n
    a225413_tabl = map (map (`div` 2)) $
                   zipWith (zipWith (-)) a101164_tabl a014473_tabl
    -- Reinhard Zumkeller, Jul 30 2013
    
  • Magma
    A008288:= func< n,k | (&+[Binomial(n-j, j)*Binomial(n-2*j, k-j): j in [0..k]]) >;
    A225413:= func< n,k | (A008288(n,k) - 2*Binomial(n,k) + 1)/2 >;
    [A225413(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 08 2024
    
  • Mathematica
    T[n_, k_]:= ((-1)^(n-k)*Hypergeometric2F1[-n+k,k+1,1,2] - 2*Binomial[n, k] +1)/2;
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2024 *)
  • SageMath
    def A008288(n,k): return sum(binomial(n-j,j)*binomial(n-2*j,k-j) for j in range(k+1))
    def A225413(n,k): return (A008288(n,k) -2*binomial(n,k) +1)//2
    flatten([[A225413(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 08 2024

Formula

T(n, k) = (A101164(n,k) - A014473(n,k))/2.
T(n, k) = (A008288(n,k) - 2*A007318(n,k) + 1)/2.
From G. C. Greubel, Apr 08 2024: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = (A000129(n+1) + n + 1 - 2^(n+1))/2.
Sum_{k=0..n} (-1)^k*T(n, k) = A121262(n) - [n=0]. (End)