A225415 Triangle read by rows: absolute values of odd-numbered rows of A225434.
1, 1, 58, 1, 1, 1556, 12006, 1556, 1, 1, 39054, 1461615, 5647300, 1461615, 39054, 1, 1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1, 1, 24414050, 11462721645, 414730580760, 3221733789330, 6783391017228, 3221733789330, 414730580760, 11462721645, 24414050, 1
Offset: 1
Examples
Triangle begins: 1; 1, 58, 1; 1, 1556, 12006, 1556, 1; 1, 39054, 1461615, 5647300, 1461615, 39054, 1; 1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the irregular triangle, flattened
Crossrefs
Programs
-
Mathematica
(* First program *) t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1,(m*n-m*k+1)*t[n-1, k-1, m] + (m*k-(m-1))*t[n-1, k, m]]; T[n_, k_]:= T[n, k] = t[n+1, k+1,4]; (* t(n,k,4) = A142459 *) Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(1+x), x], {n,1,14,2}]] (* Second program *) t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-m+1)*t[n-1,k,m]]; (* t(n,k,4) = A142459 *) T[n_, k_]:= T[n, k]= Sum[ (-1)^(k-j-1)*t[2*n,j+1,4], {j,0,k-1}]; Table[T[n, k], {n,12}, {k,2*n-1}]//Flatten (* G. C. Greubel, Mar 19 2022 *)
-
Sage
@CachedFunction def T(n, k, m): if (k==1 or k==n): return 1 else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m) def A142459(n, k): return T(n, k, 4) def A225415(n,k): return sum( (-1)^(k-j-1)*A142459(2*n, j+1) for j in (0..k-1) ) flatten([[A225415(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022
Formula
T(n, k) = Sum_{j=0..k-1} (-1)^(k-j-1)*A142459(2*n, j+1). - G. C. Greubel, Mar 19 2022
Extensions
Edited by N. J. A. Sloane, May 11 2013