cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225415 Triangle read by rows: absolute values of odd-numbered rows of A225434.

Original entry on oeis.org

1, 1, 58, 1, 1, 1556, 12006, 1556, 1, 1, 39054, 1461615, 5647300, 1461615, 39054, 1, 1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1, 1, 24414050, 11462721645, 414730580760, 3221733789330, 6783391017228, 3221733789330, 414730580760, 11462721645, 24414050, 1
Offset: 1

Views

Author

Roger L. Bagula, May 07 2013

Keywords

Examples

			Triangle begins:
  1;
  1,     58,         1;
  1,   1556,     12006,       1556,          1;
  1,  39054,   1461615,    5647300,    1461615,      39054,         1;
  1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1;
		

Crossrefs

The m=4 triangle in the sequence A034870 (m=0), A171692 (m=1), A225076 (m=2), A225398 (m=3).

Programs

  • Mathematica
    (* First program *)
    t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1,(m*n-m*k+1)*t[n-1, k-1, m] + (m*k-(m-1))*t[n-1, k, m]];
    T[n_, k_]:= T[n, k] = t[n+1, k+1,4]; (* t(n,k,4) = A142459 *)
    Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(1+x), x], {n,1,14,2}]]
    (* Second program *)
    t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-m+1)*t[n-1,k,m]]; (* t(n,k,4) = A142459 *)
    T[n_, k_]:= T[n, k]= Sum[ (-1)^(k-j-1)*t[2*n,j+1,4], {j,0,k-1}];
    Table[T[n, k], {n,12}, {k,2*n-1}]//Flatten (* G. C. Greubel, Mar 19 2022 *)
  • Sage
    @CachedFunction
    def T(n, k, m):
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
    def A142459(n, k): return T(n, k, 4)
    def A225415(n,k): return sum( (-1)^(k-j-1)*A142459(2*n, j+1) for j in (0..k-1) )
    flatten([[A225415(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022

Formula

T(n, k) = Sum_{j=0..k-1} (-1)^(k-j-1)*A142459(2*n, j+1). - G. C. Greubel, Mar 19 2022

Extensions

Edited by N. J. A. Sloane, May 11 2013