A225433 Triangle T(n, k) = T(n, k-1) + (-1)^k*A142458(n+2, k+1) if k <= floor(n/2), otherwise T(n, n-k), with T(n, 0) = T(n, n) = 1, read by rows.
1, 1, 1, 1, -38, 1, 1, -165, -165, 1, 1, -676, 4806, -676, 1, 1, -2723, 44452, 44452, -2723, 1, 1, -10914, 362895, -1346780, 362895, -10914, 1, 1, -43681, 2780367, -20297327, -20297327, 2780367, -43681, 1, 1, -174752, 20554588, -263879264, 683233990, -263879264, 20554588, -174752, 1
Offset: 0
Examples
The triangle begins: 1; 1, 1; 1, -38, 1; 1, -165, -165, 1; 1, -676, 4806, -676, 1; 1, -2723, 44452, 44452, -2723, 1; 1, -10914, 362895, -1346780, 362895, -10914, 1; 1, -43681, 2780367, -20297327, -20297327, 2780367, -43681, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Maple
See Maple program in A159041.
-
Mathematica
(* First program *) T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n+1) -m*(k+1) +1)*T[n-1, k- 1, m] + (m*(k+1) -(m-1))*T[n-1, k, m] ]; p[x_, n_]:= p[x, n]= Sum[x^i*If[i==Floor[n/2] && Mod[n, 2]==0, 0, If[i<= Floor[n/2], (-1)^i*T[n,i,3], -(-1)^(n-i)*T[n,i,3]]], {i,0,n}]/(1-x); Flatten[Table[CoefficientList[p[x, n], x], {n,0,12}]] (* Second program *) T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]]; A142458[n_, k_]:= T[n,k,3]; A225433[n_, k_]:= A225433[n, k]= If[k==0 || k==n, 1, If[k<=Floor[n/2], A225433[n, k-1] +(-1)^k*A142458[n+2, k+1], A225433[n, n-k]]]; Table[A225433[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 19 2022 *)
-
Sage
@CachedFunction def T(n, k, m): if (k==1 or k==n): return 1 else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m) def A142458(n,k): return T(n,k,3) @CachedFunction def A225433(n,k): if (k==0 or k==n): return 1 elif (k <= (n//2)): return A225433(n,k-1) + (-1)^k*A142458(n+2,k+1) else: return A225433(n,n-k) flatten([[A225433(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 19 2022
Formula
From G. C. Greubel, Mar 19 2022: (Start)
T(n, k) = T(n, k-1) + (-1)^k*A142458(n+2, k+1) if k <= floor(n/2), otherwise T(n, n-k), with T(n, 0) = T(n, n) = 1.
T(n, n-k) = T(n, k). (End)
Extensions
Edited by N. J. A. Sloane, May 11 2013
Edited by G. C. Greubel, Mar 19 2022