A225461 a(n) = (prime(k) + prime(k+1))/2 where k = A098015(n).
9, 15, 21, 26, 34, 39, 45, 50, 56, 64, 69, 76, 81, 86, 99, 105, 111, 120, 129, 134, 144, 154, 160, 165, 170, 176, 186, 195, 225, 231, 236, 246, 254, 260, 266, 274, 279, 288, 300, 309, 315, 324, 334, 342, 351, 356, 370, 376, 381, 386, 399
Offset: 1
Examples
n = 9 is in the sequence (with i = 4 and j = 1), because 9^2 = 7*11 + 2^2 = prime(4)*prime(4+1) + 2*prime(1) and prime(4+1) = 11 = 7 + 2*2 = prime(4) + 2*prime(1). Moreover, 9 = 7 + 2 = prime(4) + prime(1). Whereas n = 8 (not in the sequence) satisfies the first condition with i = 2 and j = 4 (8^2 = 3*5 + 7^2), it does NOT meet the second condition: p(i+1) = 5 != p(i) + 2*p(j) = 3 + 2*7 = 17. Moreover, 8 != 3 + 7.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
P:= select(isprime, [2,seq(2*i+1,i=1..10^4)]): G2:= (P[2..-1] - P[1..-2])/2: inds:= select(i -> isprime(G2[i]),[$2..nops(G2)]): seq(P[i] + G2[i],i=inds); # Robert Israel, Nov 30 2015
-
Mathematica
Reap[For[p = 2, p < 400, p = NextPrime[p], p1 = NextPrime[p]; If[PrimeQ[pj = (p1 - p)/2] && IntegerQ[n = Sqrt[p*p1 + pj^2]], Sow[n]]]][[2, 1]](* Jean-François Alcover, May 17 2013 *)
Extensions
Example edited by Danny Rorabaugh, Oct 26 2015
Name changed by Robert Israel, Nov 30 2015
Comments