cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225479 Triangle read by rows, the ordered Stirling cycle numbers, T(n, k) = k!* s(n, k); n >= 0 k >= 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 6, 6, 0, 6, 22, 36, 24, 0, 24, 100, 210, 240, 120, 0, 120, 548, 1350, 2040, 1800, 720, 0, 720, 3528, 9744, 17640, 21000, 15120, 5040, 0, 5040, 26136, 78792, 162456, 235200, 231840, 141120, 40320, 0, 40320, 219168, 708744, 1614816
Offset: 0

Views

Author

Peter Luschny, May 20 2013

Keywords

Comments

The Digital Library of Mathematical Functions defines the Stirling cycle numbers as (-1)^(n-k) times the Stirling numbers of the first kind.

Examples

			[n\k][0,   1,   2,    3,    4,    5,   6]
[0]   1,
[1]   0,   1,
[2]   0,   1,   2,
[3]   0,   2,   6,    6,
[4]   0,   6,  22,   36,   24,
[5]   0,  24, 100,  210,  240,  120,
[6]   0, 120, 548, 1350, 2040, 1800, 720.
...
T(4,2) = 22: The table below shows the compositions of 4 into two parts.
n = 4    Composition       Weight     4!*Weight
            3 + 1            1/3         8
            1 + 3            1/3         8
            2 + 2          1/2*1/2       6
                                        = =
                                  total 22
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, table 245.

Crossrefs

Cf. A048594 (signed version without the first column), A132393.

Programs

  • Maple
    A225479 := proc(n, k) option remember;
    if k > n or  k < 0 then return(0) fi;
    if n = 0 and k = 0 then return(1) fi;
    k*A225479(n-1, k-1) + (n-1)*A225479(n-1, k) end;
    for n from 0 to 9 do seq(A225479(n, k), k = 0..n) od;
  • Mathematica
    t[n_, k_] := k!*StirlingS1[n, k] // Abs; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 02 2013 *)
  • PARI
    T(n,k)={k!*abs(stirling(n,k,1))} \\ Andrew Howroyd, Jul 27 2020
  • Sage
    def A225479(n, k): return factorial(k)*stirling_number1(n, k)
    for n in (0..6): [A225479(n,k) for k in (0..n)]
    

Formula

For a recursion see the Maple program.
T(n, 0) = A000007; T(n, 1) = A000142; T(n, 2) = A052517.
T(n, 3) = A052748; T(n, n) = A000142; T(n, n-1) = A001286.
row sums = A007840; alternating row sums = A006252.
From Peter Bala, Sep 20 2013: (Start)
E.g.f.: 1/(1 + x*log(1 - t)) = 1 + x*t + (x + 2*x^2)*t^2/2! + (2*x + 6*x^2 + 6*x^3)*t^3/3! + ....
T(n,k) = n!*( the sum of the total weight of the compositions of n into k parts where each part i has weight 1/i ) (see Eger, Theorem 1). An example is given below. (End)
T(n,k) = A132393(n,k) * A000142(k). - Philippe Deléham, Jun 24 2015