cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225539 Numbers n where 2^n and n have the same digital root.

Original entry on oeis.org

5, 16, 23, 34, 41, 52, 59, 70, 77, 88, 95, 106, 113, 124, 131, 142, 149, 160, 167, 178, 185, 196, 203, 214, 221, 232, 239, 250, 257, 268, 275, 286, 293, 304, 311, 322, 329, 340, 347, 358, 365, 376, 383, 394, 401, 412, 419, 430, 437, 448
Offset: 1

Views

Author

Marcus Hedbring, May 17 2013

Keywords

Comments

The digital roots of n have a cycle length of 9 (A010888) and the digital roots of 2^n have a cycle length of 6 (A153130). Therefore, if n is a term so is n+18.
The only values of the digital roots of a(n) are 5 and 7 (A010718).

Examples

			For n=23, the digital root of n is 5. 2^n equals 8388608 so the digital root of 2^n is 5 as well.
		

Crossrefs

Programs

  • Mathematica
    digitalRoot[n_] :=  Module[{r = n}, While[r > 9, r = Total[IntegerDigits[ r]]]; r]; Select[Range[448], digitalRoot[2^#] == digitalRoot[#] &] (* T. D. Noe, May 19 2013 *)
    LinearRecurrence[{1,1,-1},{5,16,23},60] (* Harvey P. Dale, Dec 29 2018 *)
  • PARI
    forstep(n=16,500,[7,11],print1(n", ")) \\ Charles R Greathouse IV, May 19 2013

Formula

a(n) = 9*n - 3 + (-1)^n.
a(n) = a(n-1) + 7 (odd n), a(n) = a(n-1) + 11 (even n) with a(1) = 5.
G.f. x*(5 + 11*x + 2*x^2) / ((1-x)^2 * (1+x)). - Joerg Arndt, May 17 2013