cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225558 a(n) = A003418(n)/A000793(n).

Original entry on oeis.org

1, 1, 1, 2, 3, 10, 10, 35, 56, 126, 84, 924, 462, 6006, 4290, 3432, 5148, 58344, 58344, 554268, 554268, 554268, 554268, 6374082, 6374082, 21246940, 21246940, 52151580, 34767720, 924241890, 504131940, 15628090140, 26447537160, 26447537160, 15628090140
Offset: 0

Views

Author

Antti Karttunen, May 10 2013

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) g(n):= `if`(n=0, 1, ilcm(n, g(n-1))) end:
    b:= proc(n, i) option remember; local p;
          p:= `if`(i<1, 1, ithprime(i));
          `if`(n=0 or i<1, 1, max(b(n, i-1),
               seq(p^j*b(n-p^j, i-1), j=1..ilog[p](n))))
        end:
    a:= n->g(n)/b(n, `if`(n<8, 3,
        numtheory[pi](ceil(1.328*isqrt(n*ilog(n)))))):
    seq(a(n), n=0..40); # Alois P. Heinz, May 22 2013
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n==0 || i<1, 1, Max[b[n, i-1], Table[p^j*b[n-p^j, i-1], {j, 1, Log[p, n] // Floor }]]]]; a[0]=1; a[n_] := LCM @@ Range[n] / b[n, If[n<8, 3, PrimePi[ Ceiling[ 1.328*Sqrt[n*Log[n] // Floor]]]]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 27 2016, after Alois P. Heinz *)

Formula

a(n) = A003418(n)/A000793(n).
A074115(n)/a(n) = A025527(n).