cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A225653 Numbers n such that A225634(n) = A225644(n).

Original entry on oeis.org

0, 1, 21, 30, 33, 35, 36, 40, 42, 44, 48, 51, 52, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 88, 91, 92, 96
Offset: 0

Views

Author

Antti Karttunen, May 16 2013

Keywords

Comments

Positions of zeros in A225654.

Crossrefs

A225635 Partial sums of A225634.

Original entry on oeis.org

1, 2, 4, 7, 10, 14, 18, 22, 26, 31, 36, 42, 48, 55, 61, 67, 73, 80, 87, 95, 102, 109, 116, 124, 132, 140, 148, 157, 166, 175, 184, 194, 204, 214, 224, 234, 243, 253, 264, 275, 285, 296, 306, 318, 330, 342, 354, 367, 379, 392, 405, 418, 430, 443, 456, 469, 481
Offset: 1

Views

Author

Antti Karttunen, May 13 2013

Keywords

Comments

Gives the positions of ones in A225632.

Crossrefs

A225630 Array of iterated Landau-like functions, starting maximization of LCM from the partition {1+1+...+1} of n, read downwards antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 6, 2, 1, 1, 1, 6, 12, 6, 2, 1, 1, 1, 6, 30, 12, 6, 2, 1, 1, 1, 12, 30, 60, 12, 6, 2, 1, 1, 1, 15, 84, 60, 60, 12, 6, 2, 1, 1, 1, 20, 120, 420, 60, 60, 12, 6, 2, 1, 1, 1, 30, 180, 840, 420, 60, 60, 12, 6, 2, 1, 1
Offset: 0

Views

Author

Antti Karttunen, May 13 2013

Keywords

Comments

Row 0 consists of all 1's (corresponding to lcm(1,1,...,1) computed from the {1+1+...+1} partition), after which, on each succeeding row, the entry A(row,n) is computed by finding such a partition {p1+p2+...+pk} of n that value of lcm(A(row-1,n),p1,p2,...,pk) is maximized.
This will produce the ordinary Landau's function (A000793) for row 1, the "second order Landau's function" (A225627) for row 2, etc.
For each column n, only finite number of distinct values (A225634(n)) occur, after which the fixed point A003418(n) that has been reached repeats forever.

Examples

			Table begins:
  1, 1, 1, 1,  1,  1,  1,   1,   1,  1, ...
  1, 1, 2, 3,  4,  6,  6,  12,  15, 20, ...
  1, 1, 2, 6, 12, 30, 30,  84, 120, ...
  1, 1, 2, 6, 12, 60, 60, 420, 840, ...
  ...
		

Crossrefs

Transpose: A225631. Cf. also A225632, A225634.
Row 0: A000012, row 1: A000793, row 2: A225627, row 3: A225628. Cf. also A225629.
Rows converge towards A003418, which is also the main diagonal of this array.
See A225640 for a variant which uses a similar process, but where the "initial seed" in column n is n instead of 1.

Programs

  • Scheme
    (define (A225630 n) (A225630bi (A025581 n) (A002262 n)))
    (define (A225630bi col row) (let ((maxlcm (list 0))) (let loop ((prevmaxlcm 1) (stepsleft row)) (if (zero? stepsleft) prevmaxlcm (begin (gen_partitions col (lambda (p) (set-car! maxlcm (max (car maxlcm) (apply lcm (cons prevmaxlcm p)))))) (loop (car maxlcm) (- stepsleft 1)))))))
    (define (gen_partitions m colfun) (let recurse ((m m) (b m) (n 0) (partition (list))) (cond ((zero? m) (colfun partition)) (else (let loop ((i 1)) (recurse (- m i) i (+ 1 n) (cons i partition)) (if (< i (min b m)) (loop (+ 1 i))))))))

A225632 Irregular table read by rows: n-th row gives distinct values of successively iterated Landau-like functions for n, starting with the initial value 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 12, 1, 6, 30, 60, 1, 6, 30, 60, 1, 12, 84, 420, 1, 15, 120, 840, 1, 20, 180, 1260, 2520, 1, 30, 210, 840, 2520, 1, 30, 420, 4620, 13860, 27720, 1, 60, 660, 4620, 13860, 27720, 1, 60, 780, 8580, 60060, 180180, 360360
Offset: 1

Views

Author

Antti Karttunen, May 13 2013

Keywords

Comments

The leftmost column of table (the initial term of each row, T(n,1)) is 1, corresponding to lcm(1,1,...,1) computed from the {1+1+...+1} partition of n, after which, on the same row, each further term T(n,i) is computed by finding such a partition [p1,p2,...,pk] of n so that value of lcm(T(n,i-1), p1,p2,...,pk) is maximized, until finally A003418(n) is reached, which will be listed as the last term of row n (as the result would not change after that, if we continued the same process).

Examples

			The first fifteen rows of table are:
  1;
  1,   2;
  1,   3,    6;
  1,   4,   12;
  1,   6,   30,    60;
  1,   6,   30,    60;
  1,  12,   84,   420;
  1,  15,  120,   840;
  1,  20,  180,  1260,   2520;
  1,  30,  210,   840,   2520;
  1,  30,  420,  4620,  13860,  27720;
  1,  60,  660,  4620,  13860,  27720;
  1,  60,  780,  8580,  60060, 180180, 360360;
  1,  84, 1260, 16380, 180180, 360360;
  1, 105, 4620, 60060, 180180, 360360;
		

Crossrefs

Cf. A225634 (length of n-th row), A000793 (n>=2 gives the second column).
Cf. A225629 (second largest/rightmost term of n-th row).
Cf. A003418 (largest/rightmost term of n-th row).
Cf. A225642 (row n starts from n instead of 1).
Cf. A226055 (the first term common with A225642 on the n-th row).
Cf. A225638 (distance to that first common term from the beginning of the row n).
Cf. A226056 (number of trailing terms common with A225642 on the n-th row).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {1},
          `if`(i<1, {}, {seq(map(x->ilcm(x, `if`(j=0, 1, i)),
           b(n-i*j, i-1))[], j=0..n/i)}))
        end:
    T:= proc(n) option remember; local d, h, l, ll;
          l:= b(n$2); ll:= NULL; d:=1; h:=0;
          while d<>h do ll:= ll, d; h:= d;
            d:= max(seq(ilcm(h, i), i=l))
          od; ll
        end:
    seq(T(n), n=1..20);  # Alois P. Heinz, May 29 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, {1}, If[i<1, {}, Table[Map[Function[{x}, LCM[x, If[j==0, 1, i]]], b[n-i*j, i-1]], {j, 0, n/i}]]]; T[n_] := T[n] = Module[{d, h, l, ll}, l=b[n, n]; ll={}; d=1; h=0; While[d != h, AppendTo[ll, d]; h=d; d = Max[ Table[LCM[h, i], {i, l}]]]; ll]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jul 29 2015, after Alois P. Heinz *)

A225644 a(n) = number of distinct values in column n of A225640.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 5, 5, 5, 6, 5, 7, 6, 7, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 9, 10, 9, 9, 10, 10, 10, 10, 10, 11, 12, 11, 11, 12, 12, 11, 11, 13, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 12, 14, 13, 13, 13, 13, 13, 13, 14, 14, 15
Offset: 0

Views

Author

Antti Karttunen, May 15 2013

Keywords

Comments

For the positions of records, and other remarks, see comments at A225643.

Crossrefs

Cf. A225645 (partial sums).

Programs

  • Scheme
    (define (A225644 n) (count_number_of_distinct_lcms_of_partitions_until_fixed_point_met n n))
    (define (count_number_of_distinct_lcms_of_partitions_until_fixed_point_met n initial_value) (let loop ((lcms (list initial_value initial_value))) (fold_over_partitions_of n 1 lcm (lambda (p) (set-car! lcms (max (car lcms) (lcm (second lcms) p))))) (if (= (car lcms) (second lcms)) (length (cdr lcms)) (loop (cons (car lcms) lcms)))))
    (define (fold_over_partitions_of m initval addpartfun colfun) (let recurse ((m m) (b m) (n 0) (partition initval)) (cond ((zero? m) (colfun partition)) (else (let loop ((i 1)) (recurse (- m i) i (+ 1 n) (addpartfun i partition)) (if (< i (min b m)) (loop (+ 1 i))))))))

Formula

a(n) = A225643(n) + 1.
a(n) = A225639(n) + A226056(n).

A226056 a(n) = Number of common trailing terms on the row n of tables A225632 and A225642.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 5, 1, 1, 2, 4, 1, 5, 2, 2, 4, 5, 2, 2, 1, 2, 4, 6, 1, 5, 2, 4, 1, 4, 3, 5, 1, 4, 1, 7, 6, 8, 4, 4, 4, 9, 3, 2, 1, 5, 4, 9, 2, 2, 2, 3, 2, 8, 6, 9, 1, 1, 1, 2, 4, 8, 3, 1, 4, 7, 8, 8, 2, 3, 3, 3, 1, 8, 1, 2, 3, 10, 10
Offset: 0

Views

Author

Antti Karttunen, May 24 2013

Keywords

Comments

The positions n, in which a(n)=1: 0, 1, 2, 14, 15, 18, 26, 30, 34, 38, 40, 50, 62, 63, 64, 69, 78, 80, ...
By convention, a(0)=1 as this applies also to the tables A225630 and A225640, whose columns start from zero.
In other words, a(n) = 1 + distance from the first common term on column n (A226055(n)) of tables A225630 and A225640 to the respective fixed point, A003418(n).

Examples

			Row 7 of A225632 is: 1, 12, 84, 420;
Row 7 of A225642 is: 7, 84, 420;
the last two terms (84 and 420) are common to them, thus a(7)=2.
Row 14 of A225632 is: 1, 84, 1260, 16380, 180180, 360360;
Row 14 of A225642 is: 14, 630, 8190, 90090, 360360;
they have no common term until as the last term of those rows (which is A003418(14)=360360), thus a(14)=1.
		

Crossrefs

Programs

Formula

a(n) = A225634(n)-A225638(n) = A225644(n)-A225639(n).

A225654 a(n) = the number of surplus elements on the n-th row of A225632 compared to the n-th row of A225642.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 2, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1
Offset: 0

Views

Author

Antti Karttunen, May 17 2013

Keywords

Comments

a(n) = how many more iterations is required to reach fixed point A003418(n) with the process described in A225632 and A225642 when starting from partition {1+1+...+1} of n, than when starting from partition {n} of n.
a(0)=0 by convention.

Crossrefs

Cf. A225653 (positions of zeros).

Programs

Formula

a(n) = A225634(n) - A225644(n).
a(n) = A225638(n) - A225639(n).

A225638 a(n) is the row index where the first term in column n of A225630 equivalent to some term in column n of A225640 is found from.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 2, 5, 5, 4, 3, 6, 3, 5, 5, 3, 3, 6, 6, 7, 7, 5, 3, 8, 5, 8, 6, 9, 6, 6, 5, 10, 7, 9, 4, 4, 4, 8, 8, 8, 4, 9, 11, 12, 8, 8, 4, 11, 11, 10, 9, 10, 5, 7, 5, 12, 12, 13, 12, 9, 6, 10, 12, 9, 7, 6, 7, 13, 12, 12, 12, 13, 7, 14, 14
Offset: 0

Views

Author

Antti Karttunen, May 20 2013

Keywords

Comments

Consider an algorithm which finds a maximum value lcm(p1,p2,...,pk,prevmax) among all partitions {p1+p2+...+pk} of n, where the "seed number" prevmax is such a maximum value from the previous iteration.
a(n) tells the number of such iterations needed, when starting from the initial seed value 1, for the process to reach the first identical value (A226055(n)) that is eventually produced when the same algorithm is started with the initial seed value of n.

Examples

			Looking at A225632 and A225642, which are just arrays A225630 and A225640 transposed and repeating values removed, we see that:
row 11 of A225632 is 1, 30, 420, 4620, 13860, 27720;
row 11 of A225642 is 11, 330, 4620, 13860, 27720;
their first common term, 4620 (= A226055(11)), occurs as three positions after the initial 1 of that row in A225632, thus a(11)=3.
Equivalently, 4620 occurs as the element A(3,11) of array A225630.
		

Programs

  • Scheme
    (define (A225638 n) (if (zero? n) n (let ((fun1 (lambda (seed) (let ((max1 (list 0))) (fold_over_partitions_of n 1 lcm (lambda (p) (set-car! max1 (max (car max1) (lcm seed p))))) (car max1)))) (fun2 (lambda (seed) (let ((max2 (list 0))) (fold_over_partitions_of n (max 1 n) lcm (lambda (p) (set-car! max2 (max (car max2) (lcm seed p))))) (car max2))))) (steps-to-convergence-nondecreasing fun1 fun2 1 n))))
    (define (fold_over_partitions_of m initval addpartfun colfun) (let recurse ((m m) (b m) (n 0) (partition initval)) (cond ((zero? m) (colfun partition)) (else (let loop ((i 1)) (recurse (- m i) i (+ 1 n) (addpartfun i partition)) (if (< i (min b m)) (loop (+ 1 i))))))))
    (define (steps-to-convergence-nondecreasing fun1 fun2 initval1 initval2) (let loop ((steps 0) (a1 initval1) (a2 initval2)) (cond ((equal? a1 a2) steps) ((< a1 a2) (loop (+ steps 1) (fun1 a1) a2)) (else (loop steps a1 (fun2 a2))))))

Formula

a(n) = A225639(n) + A225654(n) = A225634(n) - A226056(n). (But please see the Scheme-program how this sequence actually can be computed.)
A226055(n) = A225630(a(n),k) = A225640(A225639(n),k).

A225631 Transpose of A225630.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 6, 4, 1, 1, 1, 2, 6, 12, 6, 1, 1, 1, 2, 6, 12, 30, 6, 1, 1, 1, 2, 6, 12, 60, 30, 12, 1, 1, 1, 2, 6, 12, 60, 60, 84, 15, 1, 1, 1, 2, 6, 12, 60, 60, 420, 120, 20, 1, 1, 1, 2, 6, 12, 60, 60, 420, 840, 180, 30, 1
Offset: 0

Views

Author

Antti Karttunen, May 13 2013

Keywords

Comments

See comments at A225630.

Crossrefs

Irregular table A225632 gives A225634(n) distinct terms from the beginning of each row.

Programs

A225633 Number of steps to reach a fixed point (A003418(n)), when starting from partition {1+1+1+...+1} of n and continuing with the process described in A225632.

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 5, 5, 5, 6, 6, 7, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 8, 9, 10, 10, 9, 10, 9, 11, 11, 11, 11, 12, 11, 12, 12, 12, 11, 12, 12, 12, 11, 11, 11, 12, 12, 13, 12, 12, 13, 13, 12, 13, 12, 12, 12, 13, 13, 14, 14
Offset: 0

Views

Author

Antti Karttunen, May 13 2013

Keywords

Comments

a(0)=0, as its only partition is an empty partition {}, and by convention lcm()=1, thus it takes no steps to reach from 1 to A003418(0)=1.
The records occur at positions 0, 2, 3, 5, 9, 11, 13, 19, 27, 31, 38, 43, 47, 61, 73, 81, ... and they seem to occur in order, i.e., as A001477. Thus the record-positions probably also give the left inverse function for this sequence. It also seems that each integer occurs only finite times in this sequence, so there should be a right inverse function as well.

Crossrefs

Formula

a(n) = A225634(n) - 1.
Showing 1-10 of 10 results.