A225640
Array A(n,k) of iterated Landau-like functions, where on the row n=0 A(0,0)=1 and A(0,k>=1)=k, and the successive rows A(n,k) give a maximum value lcm(p1,p2,...,pj,A(n-1,k)) for all partitions {p1+p2+...+pj} of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 6, 2, 1, 1, 5, 12, 6, 2, 1, 1, 6, 30, 12, 6, 2, 1, 1, 7, 30, 60, 12, 6, 2, 1, 1, 8, 84, 60, 60, 12, 6, 2, 1, 1, 9, 120, 420, 60, 60, 12, 6, 2, 1, 1, 10, 180, 840, 420, 60, 60, 12, 6, 2, 1, 1, 11, 210, 1260, 840, 420, 60, 60, 12, 6, 2, 1, 1
Offset: 0
The top-left corner of the array:
1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
1, 1, 2, 6, 12, 30, 30, 84, 120, 180, 210, 330, 420, ...
1, 1, 2, 6, 12, 60, 60, 420, 840, 1260, 840, 4620, 4620, ...
1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 13860, 13860, ...
1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, ...
...
Rows converge towards
A003418 (main diagonal of this array).
See
A225630 for a variant employing a similar process, but which uses 1 in column n as the initial seed for that column, instead of n.
A225642
Irregular table read by rows: n-th row gives distinct values of successively iterated Landau-like functions for n, starting with the initial value n.
Original entry on oeis.org
1, 2, 3, 6, 4, 12, 5, 30, 60, 6, 30, 60, 7, 84, 420, 8, 120, 840, 9, 180, 1260, 2520, 10, 210, 840, 2520, 11, 330, 4620, 13860, 27720, 12, 420, 4620, 13860, 27720, 13, 780, 8580, 60060, 180180, 360360, 14, 630, 8190, 90090, 360360, 15, 840, 10920, 120120, 360360
Offset: 1
The first fifteen rows of table are:
1;
2;
3, 6;
4, 12;
5, 30, 60;
6, 30, 60;
7, 84, 420;
8, 120, 840;
9, 180, 1260, 2520;
10, 210, 840, 2520;
11, 330, 4620, 13860, 27720;
12, 420, 4620, 13860, 27720;
13, 780, 8580, 60060, 180180, 360360;
14, 630, 8190, 90090, 360360;
15, 840, 10920, 120120, 360360;
Cf.
A225644 (length of n-th row),
A225646 (for n >= 3, second term of n-th row).
Cf.
A003418 (largest and rightmost term of n-th row).
Cf.
A225632 (each row starts with 1 instead of n).
Cf.
A225639 (distance to that first common term).
Cf.
A226056 (number of trailing common terms with
A225632 on the n-th row).
-
b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, Table[Map[Function[{x}, LCM[x, If[j == 0, 1, i]]], b[n - i * j, i - 1]], {j, 0, n/i}]]]; T[n_] := T[n] = Module[{d, h, t, lis}, t = b[n, n]; lis = {}; d = n; h = 0; While[d != h, AppendTo[lis, d]; h = d; d = Max[Table[LCM[h, i], {i, t}]]]; lis]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Mar 02 2016, after Alois P. Heinz *)
A225652
a(n) = (1/n) * lcm(n,p1,p2,...,pk) for that partition of n which maximizes this value among all partitions [p1,p2,...,pk] of n.
Original entry on oeis.org
1, 1, 2, 3, 6, 5, 12, 15, 20, 21, 30, 35, 60, 45, 56, 105, 210, 77, 420, 99, 220, 315, 840, 385, 924, 1155, 1540, 585, 2520, 364, 4620, 3465, 3640, 4620, 3432, 5005, 13860, 8190, 6160, 9009, 30030, 4290, 60060, 9945, 12376, 45045, 120120, 17017, 51480, 36036
Offset: 1
-
b:= proc(n, i) option remember; `if`(n=0, {1},
`if`(i<1, {}, {seq(map(x->ilcm(x, `if`(j=0, 1, i)),
b(n-i*j, i-1))[], j=0..n/i)}))
end:
a:= n-> max(seq(ilcm(n, i), i=b(n$2)))/n:
seq(a(n), n=1..50); # Alois P. Heinz, May 25 2013
-
b[n_, i_] := b[n, i] = If[n==0, {1}, If[i<1, {}, Table[Map[Function[{x}, LCM[x, If[j==0, 1, i]]], b[n-i*j, i-1]], {j, 0, n/i}]]]; a[n_] := Max[Table[LCM[n, i], {i, b[n, n]}]]/n; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 1, 50}] (* Jean-François Alcover, Jul 29 2015, after Alois P. Heinz *)
-
(define (A225652 n) (/ (A225646 n) (max 1 n)))
A225655
a(n) = largest LCM of partitions of n divisible by n.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 30, 11, 60, 13, 84, 105, 16, 17, 180, 19, 420, 420, 330, 23, 840, 25, 780, 27, 1540, 29, 4620, 31, 32, 4620, 3570, 9240, 13860, 37, 7980, 16380, 27720, 41, 32760, 43, 60060, 45045, 19320, 47, 55440, 49, 23100, 157080, 180180, 53
Offset: 1
A225657 lists the values of n for which a(n) = n.
-
b:= proc(n, i) option remember; `if`(n=0, {1},
`if`(i<1, {}, {seq(map(x->ilcm(x, `if`(j=0, 1, i)),
b(n-i*j, i-1))[], j=0..n/i)}))
end:
a:= n-> max(select(x-> irem(x, n)=0, b(n$2))[]):
seq(a(n), n=1..50); # Alois P. Heinz, May 26 2013
-
b[n_, i_] := b[n, i] = If[n==0, {1}, If[i<1, {}, Union @ Flatten @ Table[ Map[ Function[{x}, LCM[x, If[j==0, 1, i]]], b[n-i*j, i-1]], {j, 0, n/i}]]]; a[n_] := Max[Select[b[n, n], Mod[#, n]==0&]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jul 29 2015, after Alois P. Heinz *)
Showing 1-4 of 4 results.
Comments