A225813 a(n) = (10^n)^2 + 7*(10^n) + 1.
9, 171, 10701, 1007001, 100070001, 10000700001, 1000007000001, 100000070000001, 10000000700000001, 1000000007000000001, 100000000070000000001, 10000000000700000000001, 1000000000007000000000001, 100000000000070000000000001, 10000000000000700000000000001
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..499
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Programs
-
Maple
A225813:=n->(10^n)^2 + 7*(10^n) + 1: seq(A225813(n), n=0..20); # Wesley Ivan Hurt, Apr 08 2017
-
Mathematica
Table[(10^n)^2 + 7*(10^n) + 1, {n, 0, 20}] (* T. D. Noe, Aug 12 2013 *) LinearRecurrence[{111,-1110,1000},{9,171,10701},20] (* Harvey P. Dale, Apr 12 2020 *)
-
PARI
Vec(-9*(190*x^2-92*x+1)/((x-1)*(10*x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Apr 27 2015
Formula
From Colin Barker, Apr 27 2015: (Start)
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3).
G.f.: -9*(190*x^2-92*x+1)/((x-1)*(10*x-1)*(100*x-1)). (End)
E.g.f.: exp(x)*(1 + 7*exp(9*x) + exp(99*x)). - Elmo R. Oliveira, Jul 04 2025
Comments