A225838 Numbers of form 2^i*3^j*(6k+5), i, j, k >= 0.
5, 10, 11, 15, 17, 20, 22, 23, 29, 30, 33, 34, 35, 40, 41, 44, 45, 46, 47, 51, 53, 58, 59, 60, 65, 66, 68, 69, 70, 71, 77, 80, 82, 83, 87, 88, 89, 90, 92, 94, 95, 99, 101, 102, 105, 106, 107, 113, 116, 118, 119, 120, 123, 125, 130, 131, 132, 135, 136, 137, 138
Offset: 1
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
- Zak Seidov, Graph of A225838(n) - A225837(n) for n=1..126454.
Crossrefs
Programs
-
Magma
[n: n in [1..200] | d mod 6 eq 5 where d is n div (2^Valuation(n,2)*3^Valuation(n,3))]; // Bruno Berselli, May 16 2013
-
Mathematica
mx = 153; t = {}; Do[n = 2^i*3^j (6 k + 5); If[n <= mx, AppendTo[t, n]], {i, 0, Log[2, mx]}, {j, 0, Log[3, mx]}, {k, 0, mx/6}]; Union[t] (* T. D. Noe, May 16 2013 *)
-
PARI
for(n=1,200,t=n/(2^valuation(n,2)*3^valuation(n,3));if((t%6==5),print1(n,",")))
-
Python
from sympy import integer_log def A225838(n): def f(x): return n+sum(((x//3**i>>j)+5)//6 for i in range(integer_log(x,3)[0]+1) for j in range((x//3**i).bit_length())) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Feb 02 2025
Comments