A225841 Numbers n such that the sum of first n primorial numbers is divisible by n.
1, 2, 4, 523, 1046, 2092
Offset: 1
Examples
2 + 2*3 + 2*3*5 + 2*3*5*7 = 2 + 6 + 30 + 210 = 248, because 248 is divisible by 4, the latter is in the sequence.
Programs
-
Mathematica
With[{nn=2100},Select[Thread[{Accumulate[FoldList[Times,Prime[ Range[ nn]]]],Range[nn]}],Divisible[ #[[1]],#[[2]]]&]][[All,2]] (* Harvey P. Dale, Jul 29 2021 *)
-
PARI
list(maxx)={n=prime(1); cnt=1;summ=0;scnt=0; while(n<=maxx,summ=summ+prodeuler(x=1,prime(cnt),x); if(summ%cnt==0,scnt++;print(scnt," ",cnt) );cnt++;n=nextprime(n+1) ); } \\note MUST increase precision to 10000+ digits \\Bill McEachen, Feb 04 2014
-
PARI
P=1;S=n=0;forprime(p=2,1e4,S+=P*=p;if(S%n++==0,print1(n", "))) \\ Charles R Greathouse IV, Feb 05 2014
-
PARI
is(n)=my(q=prime(n),P=Mod(1,n),S);forprime(p=2,q,S+=P*=p);!S \\ Charles R Greathouse IV, Feb 05 2014
-
Python
primes = [] n = 1 sum = 2 primorial = 6 def addPrime(k): global n, sum, primorial for p in primes: if k%p==0: return if p*p > k: break primes.append(k) sum += primorial primorial *= k n += 1 if sum % n == 0: print(n, end=',') print(1, end=',') for p in range(5, 100000, 6): addPrime(p) addPrime(p+2)
-
Python
from itertools import accumulate, count, islice from operator import mul from sympy import prime def A225841_gen(): return (i+1 for i, m in enumerate(accumulate(accumulate((prime(n) for n in count(1)), mul))) if m % (i+1) == 0) A225841_list = list(islice(A225841_gen(),6)) # Chai Wah Wu, Feb 23 2022
Comments