A225844 Least k>0 such that triangular(n) + k*(k+1) is a triangular number.
2, 1, 3, 5, 7, 2, 11, 13, 5, 17, 19, 3, 6, 25, 27, 9, 31, 33, 35, 4, 9, 41, 8, 45, 47, 10, 14, 53, 9, 5, 59, 61, 21, 18, 67, 69, 21, 73, 75, 14, 22, 6, 11, 13, 87, 15, 91, 26, 20, 34, 12, 101, 26, 105, 30, 7, 20, 33, 115, 117, 119, 34, 21, 125, 37, 129, 29, 133, 14, 137
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; local w, k; w:= n*(n+1)/2; for k while not issqr(8*(w+k*(k+1))+1) do od; k end: seq(a(n), n=0..69); # Alois P. Heinz, Nov 13 2024
-
Mathematica
lktrno[n_]:=Module[{t=(n(n+1))/2,k=1},While[!IntegerQ[(Sqrt[ 8(t+k(k+1))+1]-1)/2],k++];k]; Array[lktrno,70,0] (* Harvey P. Dale, Aug 19 2014 *)
-
PARI
a(n)=for(k=1,2*n,t=n*(n+1)/2+k*(k+1);x=sqrtint(2*t);if(t==x*(x+1)/2,return(k))) /* from Ralf Stephan */
-
Python
def isTriangular(a): sr = 1 << (a.bit_length() >> 1) a += a while a < sr*(sr+1): sr>>=1 b = sr>>1 while b: s = sr+b if a >= s*(s+1): sr = s b>>=1 return (a==sr*(sr+1)) n = tn = 0 while 1: for m in range(1, 1000000000): if isTriangular(tn + m*(m+1)): break print(m, end=', ') n += 1 tn += n
Comments