cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A225881 Numbers k that are equal to the product of the largest triangular proper divisor of k and the sum of all triangular proper divisors of k.

Original entry on oeis.org

285, 5016, 24021, 142350, 145665, 154602, 204450, 318912, 474192, 843402, 1196690, 1283664, 1670250, 2739021, 3412950, 4255776, 5052135, 6054880, 6272140, 6433440, 6493728, 6650712, 6728190, 7156044, 7323030, 7797750, 9379350, 10108840, 10188864
Offset: 1

Views

Author

Antonio Roldán, May 19 2013

Keywords

Comments

A triangular proper divisor of k is a positive triangular number less than k that divides k. - N. J. A. Sloane, Jul 04 2021

Examples

			5016 = 66*(66+6+3+1).
		

Crossrefs

Programs

  • Mathematica
    pltQ[n_]:=Module[{d=Select[Divisors[n],OddQ[Sqrt[1+8#]]&]},n == Total[ d] Last[d]]; Select[Range[2,205000],pltQ] (* The program generates the first 7 terms of the sequence. To generate more, increase the Range constant. *) (* Harvey P. Dale, Jul 03 2021 *)
  • PARI
    msumprop(n)={k=1;i=1;s=0;d=1;while(k<=n\2,if(n/k==n\k,d=k;s+=d);i+=1;k+=i);s*=d;return(s)}
    {for (n=2,10^7,if(n==msumprop(n),print(n)))}

A225882 Numbers k such that core(k) is equal to the sum of the proper square divisors of k, where core(k) = A007913(k).

Original entry on oeis.org

20, 90, 336, 650, 5440, 7371, 13000, 14762, 28730, 30240, 83810, 87296, 130682, 147420, 218400, 280370, 295240, 406875, 708122, 924482, 1397760, 1875530, 2613640, 3536000, 4881890, 4960032, 5884851, 7856640, 7893290, 8137500
Offset: 1

Views

Author

Antonio Roldán, May 19 2013

Keywords

Comments

If p is prime and p^2 + 1 squarefree, then p^2*(p^2 + 1) is in the sequence.

Examples

			13000 is a term because core(13000) = 130 = 100 + 25 + 4 + 1.
		

Crossrefs

Programs

  • PARI
    for(n=2,10^8,if(core(n)==sumdiv(n,d,d*issquare(d)),print(n)))
    
  • PARI
    ssd(f)=prod(i=1,#f[,1],(f[i,1]^(f[i,2]+2-f[i,2]%2)-1)/(f[i,1]^2-1))
    is(n)=my(f=factor(n));prod(i=1,#f[,1],f[i,1]^(f[i,2]%2))==ssd(f) && n>1 \\ Charles R Greathouse IV, May 20 2013
Showing 1-2 of 2 results.