cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A225881 Numbers k that are equal to the product of the largest triangular proper divisor of k and the sum of all triangular proper divisors of k.

Original entry on oeis.org

285, 5016, 24021, 142350, 145665, 154602, 204450, 318912, 474192, 843402, 1196690, 1283664, 1670250, 2739021, 3412950, 4255776, 5052135, 6054880, 6272140, 6433440, 6493728, 6650712, 6728190, 7156044, 7323030, 7797750, 9379350, 10108840, 10188864
Offset: 1

Views

Author

Antonio Roldán, May 19 2013

Keywords

Comments

A triangular proper divisor of k is a positive triangular number less than k that divides k. - N. J. A. Sloane, Jul 04 2021

Examples

			5016 = 66*(66+6+3+1).
		

Crossrefs

Programs

  • Mathematica
    pltQ[n_]:=Module[{d=Select[Divisors[n],OddQ[Sqrt[1+8#]]&]},n == Total[ d] Last[d]]; Select[Range[2,205000],pltQ] (* The program generates the first 7 terms of the sequence. To generate more, increase the Range constant. *) (* Harvey P. Dale, Jul 03 2021 *)
  • PARI
    msumprop(n)={k=1;i=1;s=0;d=1;while(k<=n\2,if(n/k==n\k,d=k;s+=d);i+=1;k+=i);s*=d;return(s)}
    {for (n=2,10^7,if(n==msumprop(n),print(n)))}

A225880 Numbers that can be expressed as the product of largest odd proper divisor and the sum of odd proper divisors.

Original entry on oeis.org

12, 56, 672, 992, 11904, 16256, 55552, 195072, 666624, 910336, 10924032, 16125952, 67100672, 193511424, 805208064, 903053312, 3757637632, 10836639744, 17179738112, 45091651584, 66563866624, 206156857344, 274877382656, 798766399488, 962065334272, 1090788524032
Offset: 1

Views

Author

Antonio Roldán, May 19 2013

Keywords

Comments

The numbers a(n) can be expressed as 2^(m+n+p+...)*(2^m-1)*(2^n-1)*(2^p-1)... with 2^m-1, 2^n-1, 2^p-1 distinct Mersenne primes (A000668(n)). Example: 55552 = 2^6*7*31=2^6*(2^3-1)*(2^5-1).
This sequence is supersequence of A139256.
The number a(n) is in A139256 or a(n) is product of twice even perfect numbers A139256(n). Example: 1090788524032 = 16256*67100672 = (2*8128)*(2*33550336) = A139256(4) * A139256(5).

Examples

			11904 = 93*(93+31+3+1).
		

Crossrefs

Programs

  • PARI
    gdivodd(n)={m=n;while(m/2==m\2,m=m/2);return(m)}
    {for (n=2,2*10^8,m=gdivodd(n)*sumdiv(n, d, d*(d%2));if(m==n,print(n)))}
Showing 1-2 of 2 results.