cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225918 a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+3) and a(1) = 1.

Original entry on oeis.org

1, 9, 32, 98, 287, 828, 2377, 6812, 19510, 55866, 159958, 457987, 1311283, 3754381, 10749290, 30776629, 88117519, 252291984, 722344942, 2068168017, 5921435438, 16953843853, 48541071558, 138979434294, 397916291012, 1139286366040, 3261925819973, 9339320097349, 26739694491713
Offset: 1

Views

Author

Clark Kimberling, May 21 2013

Keywords

Comments

Suppose that f(n) is a sequence of positive real numbers for which the series f(1) + f(2) + ... diverges. Put a(1) = 1 and a(n) = least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1. Conjecture: a(n) is linearly recurrent for the choices of f(n) shown here:
f(n) ...... a(n)................ recurrence coefficients
1/n ....... A003462: 1,4,13,.... (4,-3)
1/(n+1) ... A134931: 1,6,21,.... (4,-3)
1/(n+2) ... A116952: 1,8,29,.... (4,-3)
1/(n+3) ... A225918: 1,9,32,.... (3,0,-1,0,-1)
1/(n+4) ... A225919: 1,11,40,... (4,-4,3,-2)
1/(n+5) ... A225920: 1,13,48,... ?
1/(n+6) ... A225921: 1,14,50,... ?
1/(n+7) ... A225922: 1,16,48,... ?
Assuming linear recurrence, it appears that lim_{n->infinity} a(n+1)/a(n) is the greatest root, R, of the characteristic polynomial of the recurrence, and that lim_{n->infinity} (1/(a(n-1)+1) + ... + 1/a(n)) = log R.
For sequences A225920-A225922, linear recurrence is unlikely to exist. - Max Alekseyev, Jan 27 2022

Examples

			a(1) = 1 by decree; a(2) = 9 because 1/5 + ... + 1/11 < 1 < 1/5 + ... + 1/(9+3), so that a(3) = 32 because 1/13 + ... + 1/34 < 1/5 + ... + 1/12 < 1/13 + ... + 1/(32+3).
Successive values of a(n) yield a chain: 1 < 1/(1+4) + ... + 1/(9+3) < 1/(9+4) + ... + 1/(32+3) < 1/(32+4) + ... + 1/(98+3) < ...
Abbreviating this chain as b(1) = 1 < b(2) < b(3) < b(4) < ... < R = 2.8631..., it appears that lim_{n->infinity} b(n) = log R = 1.0519... .
		

Crossrefs

Programs

  • Mathematica
    nn = 11; f[n_] := 1/(n + 3); a[1] = 1; g[n_] := g[n] = Sum[f[k], {k, 1, n}]; s = 0; a[2] = NestWhile[# + 1 &, 2, ! (s += f[#]) >= a[1] &]; s = 0; a[3] = NestWhile[# + 1 &, a[2] + 1, ! (s += f[#]) >= g[a[2]] - f[1] &]; Do[s = 0; a[z] = NestWhile[# + 1 &, a[z - 1] + 1, ! (s += f[#]) >= g[a[z - 1]] - g[a[z - 2]] &], {z, 4, nn}]; m = Map[a, Range[nn]] (* Peter J. C. Moses, May 13 2013 *)
  • PARI
    lista(nn) = {default(realprecision, 100); my(k=5, r=1, s); print1(1); for(n=2, nn, s=0; while((s+=1./k)Jinyuan Wang, Jun 14 2020

Formula

For n>=3, a(n) = ceiling( (a(n-1)+3.5)^2 / (a(n-2)+3.5) - 3.5 ) unless the fractional part of the number inside ceiling() is very small (~ 1/a(n-2)). - Max Alekseyev, Jan 27 2022

Extensions

a(12)-a(18) from Robert G. Wilson v, May 22 2013
a(19) from Jinyuan Wang, Jun 14 2020
Terms a(20) on from Max Alekseyev, Jan 27 2022