cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A225938 Number of conjugacy classes in Chevalley group E_8(q) as q runs through the prime powers (A246655).

Original entry on oeis.org

1156, 12825, 97154, 519071, 6906102, 19543486, 49150839, 238045722, 889575240, 4600759094, 7439557452, 17980383618, 82034207430, 159213167411, 293713437009, 518754968088, 882274298862, 1136129443366, 3612770425152, 8189556710532, 11973138177210, 24340206797502
Offset: 1

Views

Author

Eric M. Schmidt, May 21 2013

Keywords

Crossrefs

Programs

  • Maple
    A225938 := proc(n)
        local q ;
        q := A246655(n) ;
        if modp(q,2) = 0 then
            q^8 + q^7 + 2*q^6 + 3*q^5 +  9*q^4 + 14*q^3 + 32*q^2 + 47*q +  70;
        elif modp(q,3) = 0 then
            q^8 + q^7 + 2*q^6 + 3*q^5 + 10*q^4 + 16*q^3 + 39*q^2 + 65*q + 102 ;
        elif modp(q,5) = 0 then
            q^8 + q^7 + 2*q^6 + 3*q^5 + 10*q^4 + 16*q^3 + 40*q^2 + 67*q + 111 ;
        else
            q^8 + q^7 + 2*q^6 + 3*q^5 + 10*q^4 + 16*q^3 + 40*q^2 + 67*q + 112 ;
        end if;
    end proc: # R. J. Mathar, Jan 09 2017
  • Mathematica
    qmax = 100;
    Reap[For[q = 2, q < qmax, q++, If[PrimePowerQ[q], cc = q^8 + q^7 + 2 q^6 + 3 q^5 + Which[Mod[q, 2] == 0, 9 q^4 + 14 q^3 + 32 q^2 + 47 q + 70, Mod[q, 3] == 0, 10 q^4 + 16 q^3 + 39 q^2 + 65 q + 102, Mod[q, 5] == 0, 10 q^4 + 16 q^3 + 40 q^2 + 67 q + 111, True, 10 q^4 + 16 q^3 + 40 q^2 + 67 q + 112]; Sow[cc]]]][[2, 1]] (* Jean-François Alcover, Mar 24 2020 *)
  • Sage
    def A225938(q) : return q^8 + q^7 + 2*q^6 + 3*q^5 + (9*q^4 + 14*q^3 + 32*q^2 + 47*q + 70 if q%2==0 else 10*q^4 + 16*q^3 + 39*q^2 + 65*q + 102 if q%3==0 else 10*q^4 + 16*q^3 + 40*q^2 + 67*q + 111 if q%5==0 else 10*q^4 + 16*q^3 + 40*q^2 + 67*q + 112)

Formula

Let q be the n-th prime power. Then a(n) is
q^8 + q^7 + 2q^6 + 3q^5 + 9q^4 + 14q^3 + 32q^2 + 47q + 70, q==0(mod 2);
q^8 + q^7 + 2q^6 + 3q^5 + 10q^4 + 16q^3 + 39q^2 + 65q + 102, q==0(mod 3);
q^8 + q^7 + 2q^6 + 3q^5 + 10q^4 + 16q^3 + 40q^2 + 67q + 111, q==0(mod 5);
q^8 + q^7 + 2q^6 + 3q^5 + 10q^4 + 16q^3 + 40q^2 + 67q + 112, otherwise.

A225929 Number of conjugacy classes in Chevalley group G_2(q) as q runs through the prime powers.

Original entry on oeis.org

16, 23, 32, 44, 72, 88, 107, 152, 204, 296, 332, 408, 584, 684, 791, 908, 1032, 1096, 1452, 1772, 1944, 2312, 2508, 2924, 3608, 3852, 4232, 4632, 5192, 5484, 6408, 6731, 7064, 8108, 9612, 10412, 10824, 11672, 12108, 13004, 14892, 15884, 16392, 16648, 17432
Offset: 1

Views

Author

Eric M. Schmidt, May 21 2013

Keywords

Crossrefs

Programs

  • Sage
    def A225929(q) : return q^2 + 2*q + (9 if q%6 in [1,5] else 8)

Formula

Let q be the n-th prime power. Then a(n) = q^2 + 2q + c, where c = 9 if q == 1, 5 (mod 6) and c = 8 otherwise.

A225937 Number of conjugacy classes in adjoint Chevalley group E_7(q) as q runs through the prime powers.

Original entry on oeis.org

531, 4569, 24553, 105644, 992834, 2447517, 5477205, 21674822, 68494004, 287617189, 437805224, 946620206, 3567305234, 6369359984, 10879403385, 17889596996, 28462405562, 35505127221, 97646355404, 199751157632, 278452165094, 517886829194, 692659723976
Offset: 1

Views

Author

Eric M. Schmidt, May 21 2013

Keywords

Crossrefs

Programs

  • Sage
    def A225937(q) : return q^7 + q^6 + 2*q^5 + (4*q^4 + 10*q^3 + 15*q^2 + 25*q + 21 if q%2==0 else 5*q^4 + 13*q^3 + 24*q^2 + 46*q + 57 if q%3==0 else 5*q^4 + 13*q^3 + 24*q^2 + 47*q + 59)

Formula

Let q be the n-th prime power. Then, a(n) is
q^7 + q^6 + 2q^5 + 4q^4 + 10q^3 + 15q^2 + 25q + 21 if q == 0 (mod 2);
q^7 + q^6 + 2q^5 + 5q^4 + 13q^3 + 24q^2 + 46q + 57 if q == 0 (mod 3);
q^7 + q^6 + 2q^5 + 5q^4 + 13q^3 + 24q^2 + 47q + 59 otherwise.

A225930 Number of conjugacy classes in twisted Chevalley group 3D4(q) as q runs through the prime powers.

Original entry on oeis.org

35, 126, 345, 786, 2806, 4685, 7386, 16110, 30946, 69909, 88746, 137566, 292566, 406906, 551886, 732546, 954310, 1082405, 1926226, 2896410, 3500206, 4985766, 5884906, 8042226, 12326286, 14076610, 17043525, 20456446, 25774710, 28792666, 39449446, 43584810, 48037086
Offset: 1

Views

Author

Eric M. Schmidt, May 21 2013

Keywords

Crossrefs

Cf. A000961 (without 1), A188161, A224790, A225928-A225938.

Programs

  • Mathematica
    Map[(#^2 + 1)*(# + 1)*# + 5 + Mod[#, 2] &, Select[Range[100], PrimePowerQ]] (* Paolo Xausa, Jan 16 2025 *)
  • PARI
    apply(x->(x^4 + x^3 + x^2 + x + 5 + (x%2)), select(isprimepower, [1..100])) \\ Michel Marcus, Jan 16 2025

Formula

Let q be the n-th prime power. Then, a(n) = q^4 + q^3 + q^2 + q + c, where c = 5 if q is even and c = 6 if q is odd.

A225931 Number of conjugacy classes in Chevalley group F_4(q) as q runs through the prime powers.

Original entry on oeis.org

95, 273, 539, 1156, 3566, 5603, 8751, 18346, 34364, 75443, 95656, 146882, 308254, 426656, 576345, 762412, 990326, 1120595, 1985636, 2976016, 3591434, 5103526, 6017672, 8208724, 12553402, 14326796, 17326739, 20785106, 26163886, 29214704, 39981062, 44156775
Offset: 1

Views

Author

Eric M. Schmidt, May 21 2013

Keywords

Crossrefs

Programs

  • Sage
    def A225931(q) : return q^4 + 2*q^3 + (6*q^2 + 10*q + 19 if q%2==0 else 7*q^2 + 15*q + 30 if q%3==0 else 7*q^2 + 15*q + 31)

Formula

Let q be the n-th prime power.
a(n) = q^4 + 2q^3 + 6q^2 + 10q + 19 if q == 0 mod 2.
a(n) = q^4 + 2q^3 + 7q^2 + 15q + 30 if q == 0 mod 3.
a(n) = q^4 + 2q^3 + 7q^2 + 15q + 31 otherwise.

A225932 Number of conjugacy classes in simply connected Chevalley group E_6(q) as q runs through the prime powers.

Original entry on oeis.org

180, 1269, 6116, 20454, 140886, 304548, 605685, 1965462, 5262486, 17969012, 25736406, 49802214, 155060070, 254728710, 402876885, 616803846, 918054582, 1109465220, 2638941366, 4871761782, 6475396806, 11018543046, 14135564454, 22598655270, 42920128086
Offset: 1

Views

Author

Eric M. Schmidt, May 21 2013

Keywords

Crossrefs

Programs

  • Sage
    def A225932(q) : return q^6 + q^5 + 2*q^4 + 2*q^3 + [15*q^2 + 21*q + 60, 6*q^2 + 4*q + 4, 7*q^2 + 5*q + 3, 14*q^2 + 20*q + 52, 7*q^2 + 5*q + 4][q%6-1]

Formula

Let q be the n-th prime power.
a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 15q^2 + 21q + 60 if q == 1 (mod 6).
a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 6q^2 + 4q + 4 if q == 2 (mod 6).
a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 7q^2 + 5q + 3 if q == 3 (mod 6).
a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 14q^2 + 20q + 52 if q == 4 (mod 6).
a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 7q^2 + 5q + 4 if q == 5 (mod 6).

A225933 Number of conjugacy classes in adjoint Chevalley group E_6(q) as q runs through the prime powers.

Original entry on oeis.org

180, 1269, 5940, 20454, 140470, 304548, 605685, 1965462, 5261278, 17967252, 25736406, 49799782, 155060070, 254724622, 402876885, 616803846, 918048406, 1109465220, 2638932670, 4871761782, 6475385158, 11018543046, 14135549422, 22598655270, 42920128086
Offset: 1

Views

Author

Eric M. Schmidt, May 21 2013

Keywords

Crossrefs

Programs

  • Sage
    def A225933(q) : return q^6 + q^5 + 2*q^4 + 2*q^3 + [9*q^2 + 9*q + 22, 6*q^2 + 4*q + 4, 7*q^2 + 5*q + 3, 8*q^2 + 8*q + 20, 7*q^2 + 5*q + 4][q%6-1]

Formula

Let q be the n-th prime power.
a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 9q^2 + 9q + 22 if q == 1 (mod 6).
a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 6q^2 + 4q + 4 if q == 2 (mod 6).
a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 7q^2 + 5q + 3 if q == 3 (mod 6).
a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 8q^2 + 8q + 20 if q == 4 (mod 6).
a(n) = q^6 + q^5 + 2q^4 + 2q^3 + 7q^2 + 5q + 4 if q == 5 (mod 6).

A225934 Number of conjugacy classes in simply connected twisted Chevalley group 2E6(q) as q runs through the prime powers.

Original entry on oeis.org

346, 1389, 6102, 21182, 141262, 306574, 607533, 1969886, 5266030, 17975982, 25750142, 49814254, 155091326, 254757166, 402919341, 616863422, 918109966, 1109543806, 2639036782, 4871920766, 6475547950, 11018778302, 14135789614, 22598987966, 42920581982
Offset: 1

Views

Author

Eric M. Schmidt, May 21 2013

Keywords

Crossrefs

Programs

  • Sage
    def A225934(q) : return q^6 + q^5 + 2*q^4 + 4*q^3 + [11*q^2 + 11*q + 16, 18*q^2 + 26*q + 62, 11*q^2 + 11*q + 15, 10*q^2 + 10*q + 14, 19*q^2 + 27*q + 72][q%6-1]

Formula

Let q be the n-th prime power.
a(n) = q^6 + q^5 + 2q^4 + 11q^2 + 11q + 16 if q == (1 mod 6).
a(n) = q^6 + q^5 + 2q^4 + 18q^2 + 26q + 62 if q == (2 mod 6).
a(n) = q^6 + q^5 + 2q^4 + 11q^2 + 11q + 15 if q == (3 mod 6).
a(n) = q^6 + q^5 + 2q^4 + 10q^2 + 10q + 14 if q == (4 mod 6).
a(n) = q^6 + q^5 + 2q^4 + 19q^2 + 27q + 72 if q == (5 mod 6).

A225935 Number of conjugacy classes in adjoint twisted Chevalley group 2E6(q) as q runs through the prime powers.

Original entry on oeis.org

266, 1389, 6102, 20934, 141262, 306062, 607533, 1968990, 5266030, 17975982, 25748166, 49814254, 155087838, 254757166, 402919341, 616857990, 918109966, 1109537246, 2639036782, 4871910150, 6475547950, 11018764446, 14135789614, 22598970438, 42920560350
Offset: 1

Views

Author

Eric M. Schmidt, May 21 2013

Keywords

Crossrefs

Programs

  • Sage
    def A225935(q) : return q^6 + q^5 + 2*q^4 + 4*q^3 + [11*q^2 + 11*q + 16, 12*q^2 + 14*q + 30, 11*q^2 + 11*q + 15, 10*q^2 + 10*q + 14, 13*q^2 + 15*q + 34][q%6-1]

Formula

Let q be the n-th prime power.
a(n) = q^6 + q^5 + 2q^4 + 4q^3 + 11q^2 + 11q + 16 if q == 1 (mod 6).
a(n) = q^6 + q^5 + 2q^4 + 4q^3 + 12q^2 + 14q + 30 if q == 2 (mod 6).
a(n) = q^6 + q^5 + 2q^4 + 4q^3 + 11q^2 + 11q + 15 if q == 3 (mod 6).
a(n) = q^6 + q^5 + 2q^4 + 4q^3 + 10q^2 + 10q + 14 if q == 4 (mod 6).
a(n) = q^6 + q^5 + 2q^4 + 4q^3 + 13q^2 + 15q + 34 if q == 5 (mod 6).

A225936 Number of conjugacy classes in simply connected Chevalley group E_7(q) as q runs through the prime powers.

Original entry on oeis.org

531, 5052, 24553, 107833, 999759, 2447517, 5494392, 21711067, 68562129, 287617189, 437995549, 946912755, 3567919999, 6370211253, 10880553708, 17891119105, 28464383127, 35505127221, 97650322329, 199757104357, 278459342139, 517897029319, 692671751805
Offset: 1

Views

Author

Eric M. Schmidt, May 21 2013

Keywords

Crossrefs

Programs

  • Sage
    def A225936(q) : return q^7 + q^6 + 2*q^5 + (4*q^4 + 10*q^3 + 15*q^2 + 25*q + 21 if q%2==0 else 7*q^4 + 17*q^3 + 35*q^2 + 70*q + 99 if q%3==0 else 7*q^4 + 17*q^3 + 35*q^2 + 71*q + 103)

Formula

Let q be the n-th prime power. Then, a(n) is
q^7 + q^6 + 2q^5 + 4q^4 + 10q^3 + 15q^2 + 25q + 21 if q == 0 (mod 2);
q^7 + q^6 + 2q^5 + 7q^4 + 17q^3 + 35q^2 + 70q + 99 if q == 0 (mod 3);
q^7 + q^6 + 2q^5 + 7q^4 + 17q^3 + 35q^2 + 71q + 103 otherwise.
Showing 1-10 of 10 results.