A225948 a(0) = -1; for n>0, a(n) = numerator(1/4 - 4/n^2).
-1, -15, -3, -7, 0, 9, 5, 33, 3, 65, 21, 105, 2, 153, 45, 209, 15, 273, 77, 345, 6, 425, 117, 513, 35, 609, 165, 713, 12, 825, 221, 945, 63, 1073, 285, 1209, 20, 1353, 357, 1505, 99, 1665, 437, 1833, 30, 2009, 525, 2193, 143
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,-3,0,0,0,0,0,0,0,1).
Programs
-
Magma
[-1] cat [Numerator(1/4-4/n^2): n in [1..50]]; // Bruno Berselli, May 22 2013
-
Mathematica
Join[{-1}, Table[Numerator[1/4 - 4/n^2], {n, 50}]] (* Bruno Berselli, May 24 2013 *)
-
PARI
concat([-1], vector(100, n, numerator(1/4 - 4/n^2))) \\ G. C. Greubel, Sep 19 2018
Formula
a(n) = 3*a(n-8) -3*a(n-16) +a(n-24).
G.f.: -(1 +15*x +3*x^2 +7*x^3 -9*x^5 -5*x^6 -33*x^7 -6*x^8 -110*x^9 -30*x^10 -126*x^11 -2*x^12 -126*x^13 -30*x^14 -110*x^15 -3*x^16 -33*x^17 -5*x^18 -9*x^19 +7*x^21 +3*x^22 +15*x^23)/(1-x^8)^3. - Bruno Berselli, May 22 2013
a(n) = (n^2-16)*(6*cos(Pi*n/4)-54*cos(Pi*n/2)+6*cos(3*Pi*n/4)-219*(-1)^n+293)/512. - Bruno Berselli, May 22 2013
a(n+10) = a(n+2)*(n+14)/(n-2) for n=0,1 and n>2. - Bruno Berselli, May 22 2013
Extensions
Edited by Bruno Berselli, May 22 2013
Comments