A226047 Largest prime power dividing binomial(2n, n).
2, 3, 5, 7, 9, 11, 13, 13, 17, 19, 19, 23, 25, 27, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 49, 49, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 81, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113
Offset: 1
Examples
Binomial(10, 5) = 2^2 * 3^2 * 7 and so a(5) = max({2^2, 3^2, 7}) = 3^2.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- P. Erdős, Beweis eines Satzes von Tschebyschef (in German), Acta Litt. Sci. Szeged 5 (1932), pp. 194-198.
Programs
-
Haskell
a226047 = maximum . a226078_row -- Reinhard Zumkeller, May 25 2013
-
Maple
f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]): a:= proc(n) local p; p:= add(f(n+i) -f(i), i=1..n); max(seq(i^coeff(p, x, i), i=1..degree(p))) end: seq(a(n), n=1..60); # Alois P. Heinz, May 24 2013
-
Mathematica
cnt[n_, p_] := (n - Total@IntegerDigits[n, p])/(p-1); a[n_] := Block[{k = 2*n, p, e}, While[! PrimePowerQ[k] || ({p, e} = FactorInteger[k][[1]]; cnt[2*n , p] - 2 cnt[n, p] != e), k--]; k]; Array[a, 60] (* Giovanni Resta, May 24 2013 *) Table[Max[Select[Divisors[Binomial[2 n,n]],PrimePowerQ]],{n,60}] (* Harvey P. Dale, Feb 26 2024 *)
-
PARI
ord(n,p)=my(s);while(n\=p,s+=n);s a(n)=my(p=precprime(2*n));forstep(k=2*n,p+1,-1, my(q,e=isprimepower(k, &q)); if(e && e == ord(2*n,q)-2*ord(n,q), return(k)));p /* requires PARI v.2.5 or later */
-
PARI
A226047(n)={for(k=2,#n=factor(binomial(2*n,n))~,factorback(n[,k-1]~)>factorback(n[,k]~) && n[,k]=n[,k-1]);factorback(n[,#n]~)} \\ highly unoptimized, not suitable for n>>10^4. - M. F. Hasler, May 24 2013
Formula
Erdős proved that a(n) <= 2n.
Comments