A226078 Table read by rows: prime power factors of central binomial coefficients, cf. A000984.
1, 2, 2, 3, 4, 5, 2, 5, 7, 4, 9, 7, 4, 3, 7, 11, 8, 3, 11, 13, 2, 9, 5, 11, 13, 4, 5, 11, 13, 17, 4, 11, 13, 17, 19, 8, 3, 7, 13, 17, 19, 4, 7, 13, 17, 19, 23, 8, 25, 7, 17, 19, 23, 8, 27, 25, 17, 19, 23, 16, 9, 5, 17, 19, 23, 29, 2, 9, 5, 17, 19, 23, 29, 31
Offset: 0
Examples
. n initial rows A000984(n) A226047(n) . ---+------------------------------+-------------+------------ . 0 [1] 1 . 1 [2] 2 2 . 2 [2,3] 6 3 . 3 [4,5] 20 5 . 4 [2,5,7] 70 7 . 5 [4,9,7] 252 9 . 6 [4,3,7,11] 924 11 . 7 [8,3,11,13] 3432 13 . 8 [2,9,5,11,13] 12870 13 . 9 [4,5,11,13,17] 48620 17 . 10 [4,11,13,17,19] 184756 19 . 11 [8,3,7,13,17,19] 705432 19 . 12 [4,7,13,17,19,23] 2704156 23 . 13 [8,25,7,17,19,23] 10400600 25 . 14 [8,27,25,17,19,23] 40116600 27 . 15 [16,9,5,17,19,23,29] 155117520 29 . 16 [2,9,5,17,19,23,29,31] 601080390 31 . 17 [4,27,5,11,19,23,29,31] 2333606220 31 . 18 [4,3,25,7,11,19,23,29,31] 9075135300 31 . 19 [8,3,25,7,11,23,29,31,37] 35345263800 37 . 20 [4,9,5,7,11,13,23,29,31,37] 137846528820 37 .
Links
- Reinhard Zumkeller, Rows n = 0..250 of triangle, flattened
Crossrefs
Programs
-
Haskell
a226078 n k = a226078_tabf !! n !! k a226078_row n = a226078_tabf !! n a226078_tabf = map a141809_row a000984_list
-
Maple
f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]): b:= proc(n) local p; p:= add(f(n+i) -f(i), i=1..n); seq(`if`(coeff(p, x, i)>0, i^coeff(p, x, i), NULL), i=1..degree(p)) end: T:= n-> `if`(n=0, 1, b(n)): seq(T(n), n=0..30); # Alois P. Heinz, May 25 2013
-
Mathematica
Table[Power @@@ FactorInteger[(2n)!/n!^2] , {n, 0, 30}] // Flatten (* Jean-François Alcover, Jul 29 2015 *)
-
PARI
row(n)= if(n<1, [1], [ e[1]^e[2] |e<-Col(factor(binomial(2*n, n)))]); \\ Ruud H.G. van Tol, Nov 18 2024